UNIT -1

Introduction: Abstract data types, Singly linked list: Definition, operations: Traversing, Searching,
Insertion and deletion, Doubly linked list: Definition, operations: Traversing, Searching, Insertion and
deletion, Circular Linked List: Definition, operations: Traversing, Searching, Insertion and deletion

Data structure A data structure is a specialized format for organizing and storing data.
General data structure types include the array, the file, the record, the table, the tree, and so on.
Any data structure is designed to organize data to suit a specific purpose so that it can be accessed
and worked with in appropriate ways
Abstract Data Type

In computer science, an abstract data type (ADT) is a mathematical model for data types
where a data type is defined by its behavior (semantics) from the point of view of a user
of the data, specifically in terms of possible values, possible operations on data of this type,
and the behavior of these operations. When a class is used as a type, it is an abstract type that
refers to a hidden representation. In this model an ADT is typically implemented as a class, and
each instance of the ADT is usually a n object of that class.
In ADT all the implementation details are hidden

Data Structures

Buitt-in Data User Defined
Structures Data Structures
I [
I I | I I I
| Integer | Float Character | Fointer | Arrays Ligts Files
I Linear Lists I | Non-Linear Lis‘fs|
Stacks IQUEUESI | Trees | |Grapn5 |

o Linear data structures are the data structures in which data is arranged ina list or in a
sequence.
¢ Non linear data structures are the data structures in which data may be arranged in a
hierarchic al manner
LIST ADT
List is basically the collection of elements arrange d in a sequential manner. In memory
we can store the list in two ways: one way is we can store the elements in sequential
memory locations. That means we can store the list in arrays.
The other way is we can use pointers or links to associate elements sequentially.
This is known as linked list.

LINKED LISTS

The linked list is very different type of collection from an array. Using such lists, we can
store collections of information limited only by the total amount of memory that the OS will allow
us to use.Further more, there is no need to specify our needs in advance. The linked list is very
flexible dynamic data structure : items may be added to it or deleted from it at will. A programmer
need not worry about how many items a program will have to accommaodate in advance. This
allows us to write robust programs which require much less maintenance.

UNIT -1

The linked allocation has the following draw backs:
1. No direct access to a particular element.
2. Additional memory required for pointers.

Linked list are of 3 types:
1. Singly Linked List

2. Doubly Linked List

3. Circularly Linked List

SINGLY LINKED LIST

Assingly linked list, or simply a linked list, is a linear collection of data items. The linear order is
given by means of POINTERS. These types of lists are often referred to as linear linked list.

* Each item in the list is called a node.

* Each node of the list has two fields:

1. Information- contains the item being stored in the list.

2. Next address- contains the address of the next item in the list.

* The last node in the list contains NULL pointer to indicate that it is the end of the list.

Conceptual view of Singly Linked List

Y
A4

Data| Ptr Datal Ptr Data | Ptr » Data [NULL

Operations on Singly linked list:
> Insertion of a node
> Deletions of a node
» Traversing thelist

Structure of a node:
Method -1:

struct node

{ Data link

int data;
struct node *link;

%

Method -2:

class node

{

public:
int data;
node *link;

%

UNIT -1

Insertions: To place an elements in the list there are 3 cases :
1. At the beginning

2. End of the list

3. At a given position

case 1:Insert at the beginning

Eg:
head last
10 ™ 20 * 30 ™ 40 NULL

h

temp ——»

0 |N'U'LL

head is the pointer variable which contains address of the first node and temp contains address of
new node to be inserted then sample codei

temp->link=head; :
head=temp; f
After insertion:
Insert at the beginning of list.
lfad lfst
50 * 10 » 20 * 30 » 40 NULL

Code for insert front:-

template <class T>

void list<T>::insert_front()

{

struct node <T>*t,*temp;
cout<<"Enter data into node:";
cin>>item;
temp=create_node(item);
if(head==NULL)

head=temp;

else

{ temp->link=head;
head=temp;

}

UNIT -1

case 2:Inserting end of the list

head last
Eg: I
X
50 > 10 » 20 » 30 40 NULL
Insert | 60 NULL at the end of list.
temp

head is the pointer variable which contains address of the first node and temp contains address of new
node to be inserted then sample code is

/ =head; | \

while(t->link!=NULL)
{
t=t->link;
}
kt->|ink=temp; j:
After insertion the linked list is
50 » 10 20 > 30 » 40 P 60 NULL

Code for insert End:-

template <class T>

void list<T>::insert_end()

{

struct node<T> *t,*temp;

intn;
cout<<"Enter data into node:";
cin>>n;
temp=create_node(n);
if(head==NULL)

head=temp;
else
{ t=head;
while(t->link!=NULL)
t=t->link;
t->link=temp;
}

UNIT -1

case 3: Insert at a position

h 4

10

h 4

20 » 30 40 | NuL

NULL
Insert 60

insert node at position 3

head is the pointer variable which contains address of the first node and temp contains address of new
node to be inserted then sample code is

while(c<pos)

prev=cur;
cur=cur->link;
c++;

prev->link=temp;

\temp->link=cur; J ‘

40 NULL

10

\ 4
2
(=]

A
%]
<

Y

Code for inserting a node at a given position: -

template <class T>
void list<T>::Insert_at_pos(int pos)
{struct node<T>*cur,*prev,*temp;
int c=1;
cout<<"Enter data into node:";
cin>>item
temp=create_node(item);
if(head==NULL)
head=temp;
else
{
prev=cur=head;
if(pos==1)

temp->link=head;

UNIT -1

head=temp;

}

else

{

while(c<pos)

{ (S
prev=cur;
cur=cur->link;

}

prev->link=temp;
temp->link=cur;

}
¥

Deletions: Removing an element from the list, without destroying the integrity of the list itself.
To place an element from the list there are 3 cases :

1. Delete a node at beginning of the list

2. Delete a node at end of the list

3. Delete a node at a given position

Case 1: Delete a node at beginning of the list

head

h 4

10

Y
(]
[==)

k.

™ 30 40 NULL

head is the pointer variable which contains address of the first node

sample code is
t=head;
head=head->link;
cout<<"node "<<t->data<<" Deletion is sucess";
delete(t);

Y

head —* 20 > 30 40 NULL

code for deleting a node at front

template <class T>
void list<T>::delete_front()
{
struct node<T>*t;
if(head==NULL)
cout<<"List is Empty\n";
else
{ t=head:;

UNIT -1

head=head->link;
cout<<"node "<<t->data<<" Deletion is sucess";
delete(t);

¥

Case 2. Delete a node at end of the list

head

h 4

h 4
[3o]
=]

h 4

10 30 40 NULL

To delete last node , find the node using following code

D a0 O L g A a2

@ruct node<T>*cur,*prev; \ :

cur=prev=head,

while(cur->link!=NULL)

{ prev=cur;
cur=cur->link;

}

prev->link=NULL;
cout<<"node "<<cur->data<<" Deletion is sucess";

\free(cur); J
head \

10

Y

Y
(3]
<

20 NULL

code for deleting a node at end of the list

template <class T>

void list<T>::delete_end()

{

struct node<T>*cur,*prev;
cur=prev=head;
if(head==NULL)

cout<<"List is Empty\n";

else
{ cur=prev=head;
if(head->link==NULL)
{
cout<<"node "<<cur->data<<" Deletion is sucess";
free(cur);
head=NULL;

UNIT -1

else
{ while(cur->link!=NULL)
{ prev=cur,;
cur=cur->link;
}
prev->link=NULL;
cout<<"node "<<cur->data<<" Deletion is sucess";
free(cur);
}

¥

CASE 3. Delete a node at a given position

head

Y
2
]

Y

10 30 * 40

NULL

Delete node at position 3

head is the pointer variable which contains address of the first node. Node to be deleted is node

containing value 30.
Finding node at position 3

Kc:l; o \

while(c<pos)

{ c++;
prev=cur;
cur=cur->link;

}

_ v
previ crr

10 20 —1—| 30 » 40 NULL
cur is the node to be deleted . before deleting update links
code to update links prev->link=cur->link
cout<<cur->data <<"is deleted successfully";
delete cur;
pre\d c&ur
10 » 20 /\= 30 ./\= 40 NULL

UNIT -1

Traversing the list: Assuming we are given the pointer to the head of the list, how do we get the end
of the list.

template <class T>
void list<T>:: display()

{
struct node<T>*t;
if(head==NULL)
{
cout<<"List is Empty\n";
}
else
{ t=head;
while(t!=NULL)
{ cout<<t->data<<"->";
t=t->link;
}
}
= = Z = Z } = 2 = = = = = = Z = Z = = = Z = = Z £ = G e T o T
[Dynamic Implementation of list ADT] i

#include<iostream.h>
#include<stdlib.h>
template <class T>
struct node

{
T data;
struct node<T> *link;
j2
template <class T>
class list
{ - -
int item;
struct node<T>*head;
public:
list();
void display();

struct node<T>*create_node(int n);
void insert_end();

void insert_front();

void Insert_at_pos(int pos);

void delete_end();

void delete_front();

void Delete_at_pos(int pos);

void Node_count();

UNIT -1

template <class T>
list<T>::list()

{
¥

template <class T>
void list<T>:: display()

head=NULL;

{
struct node<T>*t;
if(head==NULL)
{
cout<<"List is Empty\n";
}
else
{ t=head;
while(t!'=NULL)
{ cout<<t->data<<"->";
t=t->link;
}
}
}

template <class T>
struct node<T>* list<T>::create_node(int n)
{struct node<T> *t;
t=new struct node<T>;
t->data=n;
t->link=NULL,;
return t;

}

template <class T>
void list<T>::insert_end()
{struct node<T> *t,*temp;
intn;
cout<<"Enter data into node:";
cin>>n;
temp=create_node(n);
if(head==NULL)
head=temp;
else
{ t=head;
while(t->link!I=NULL)
t=t->link;
t->link=temp;

10

UNIT -1

template <class T>

void list<T>::insert_front()

{

struct node <T>*t,*temp;
cout<<"Enter data into node:";
cin>>item;
temp=create_node(item);
if(head==NULL)

head=temp;

else

{ temp->link=head,;
head=temp;

}

¥

template <class T>
void list<T>::delete_end()
{
struct node<T>*cur,*prev;
cur=prev=head,
if(head==NULL)
cout<<"List is Empty\n";

else
{ cur=prev=head;
if(head->link==NULL)
{
cout<<"node "<<cur->data<<" Deletion is sucess";
free(cur);
head=NULL;
}
else
{ while(cur->link!I=NULL)
{ prev=cur;
cur=cur->link;
}
prev->link=NULL;
cout<<"node "<<cur->data<<" Deletion is sucess";
free(cur);
}
}

}

template <class T>
void list<T>::delete_front()
{
struct node<T>*t;
if(head==NULL)
cout<<"List is Empty\n";
else
{ t=head:;
head=head->link;

UNIT -1

cout<<"node "<<t->data<<" Deletion is sucess";
delete(t);

¥

template <class T>
void list<T>::Node_count()

{
struct node<T>*t;
int c=0;
t=head;
if(head==NULL)
{
cout<<"List is Empty\n";
}
else
{ while(t'=NULL)
C++,
t=t->link;
}
cout<<"Node Count="<<c<<endl;
}
}

template <class T>
void list<T>::Insert_at_pos(int pos)
{struct node<T>*cur,*prev,*temp;
int c=1;
cout<<"Enter data into node:";
cin>>item
temp=create_node(item);
if(head==NULL)

head=temp;

else
{ prev=cur=head;
if(pos==1)

{
temp->link=head;
head=temp;

}

else

{

while(c<pos)

{ CH,
prev=cur;
cur=cur->link;

}

prev->link=temp;
temp->link=cur;

¥

12

UNIT -1

¥

template <class T>
void list<T>::Delete_at_pos(int pos)

{
struct node<T>*cur,*prev,*temp;
int c=1,
if(head==NULL)
{
cout<<"List is Empty\n";
}
else
{ prev=cur=head,
if(pos==1)
{
head=head->link;
cout<<cur->data <<"is deleted sucesfully";
delete cur;
}
else
{

while(c<pos)

{ c++;
prev=cur;
cur=cur->link;

}

prev->link=cur->link;

cout<<cur->data <<"is deleted sucesfully";
delete cur;
}
}
}
int main()
{
int ncount,ch,pos;
list <int> L;
while(1)
{

cout<<"\n ***Qperations on Linked List***"<<endlI;
cout<<"\nl.Insert node at End"<<endl;
cout<<"2.Insert node at Front"<<endl;
cout<<"3.Delete node at END"<<endl;
cout<<"4.Delete node at Front"<<endl;
cout<<"5.Insert at a position "<<endl,
cout<<"6.Delete at a position "<<endl;
cout<<"7.Node Count"<<endl;

cout<<"8.Display nodes "<<endl;

cout<<"9.Clear Screen "<<endl;

13

UNIT -1

cout<<"10.Exit "<<endl;
cout<<"Enter Your choice:";

cin>>ch;
switch(ch)
{
case 1: L.insert_end();
break;
case 2: L.insert_front();
break;
case 3:L.delete_end();
break;
case 4:L.delete_front();
break;
case 5: cout<<"Enter position to insert";
cin>>pos;
L.Insert_at_pos(pos);
break;
case 6: cout<<"Enter position to insert";
cin>>pos;
L.Delete_at_pos(pos);
break;
case 7: L.Node_count();
break;
case 8: L.display();
break;
case 9:system("'cls");
break;

case 10:exit(0);

default:cout<<"Invalid choice";

}

DOUBLY LINKED LIST

A singly linked list has the disadvantage that we can only traverse it in one direction. Many
applications require searching backwards and forwards through sections of a list. A useful refinement
that can be made to the singly linked list is to create a doubly linked list. The distinction made
between the two list types is that while singly linked list have pointers going in one direction, doubly
linked list have pointer both to the next and to the previous element in the list. The main advantage of
a doubly linked list is that, they permit traversing or searching of the list in both directions.

In this linked list each node contains three fields.
a) One to store data
b) Remaining are self referential pointers which points to previous and next nodes in the list

prev data next

14

UNIT -1

Implementation of node using structure

Method -1:
struct node
{
int data;
struct node *prev;
struct node * next;
%

Implementation of node using class

Method -2:

class node

{

public:
int data;
node *prev;
node * next;

%

NULL | 10 P > 20

A 4

Operations on Doubly linked list:
» Insertion of a node
» Deletions of a node
» Traversing the list

Doubly linked list ADT:

template <class T>

class dlist
{

int data;

struct dnode<T>*head;
public:

dlist()

{

head=NULL;
}
void display();

struct dnode<T>*create_dnode(int n);
void insert_end();

void insert_front();

void delete_end();

void delete_front();

void dnode_count();

A

30

NULL

15

UNIT -1

void Insert_at_pos(int pos);
void Delete_at_pos(int pos);

j
Insertions: To place an elements in the list there are 3 cases
» 1. At the beginning

» 2. End of the list
» 3. At agiven position

case 1:Insert at the beginning

head
N

NULL | 10 20 30 NULL

A
A

NULL | 40 NULL

temp

head is the pointer variable which contains address of the first node and temp contains address of new
node to be inserted then sample code is

temp->next=head;
head->prev=temp;
head=temp;

head

A 4
A 4
A 4

40 10 20 30 NULL

A
A
A

Code for insert front:-
template <class T>
void DLL<T>::insert_front()

{

struct dnode <T>*t,*temp;
cout<<"Enter data into node:";
cin>>data;

temp=create_dnode(data);
if(head==NULL)

head=temp;

else

{ temp->next=head; head-
>prev=temp;
head=temp;

}

UNIT -1

case 2:Inserting end of the list

A

head \
NULL | 10 p > 20
temp NULL | 40 NULL

30

NULL

head is the pointer variable which contains address of the first node and temp contains address of
new node to be inserted then sample code is

head

t=head;
while(t->next!=NULL)
t=t->next;
t->next=temp;
temp->prev=t;

NULL

10

20

A 4

Code to insert a node at End:-

template <class T>
void DLL<T>::insert_end()

{

struct dnode<T> *t,*temp;

intn;

cout<<"Enter data into dnode:";
cin>>n;
temp=create_dnode(n);
if(head==NULL)
head=temp;
else
{ t=head;
while(t->next!=NULL)
t=t->next;

A

30

40

NULL

UNIT -1

t->next=temp;
temp->prev=t;

case 3:Inserting at a give position

A

A 4

20

head \
NULL | 10
temp >

A

A 4

40

insert 40 at position 2

head is the pointer variable which contains address of the first node and temp contains address of new

node to be inserted then sample code is

count++;
pr=cr;
cr=cr->next;

mhile(cou nt<pos)
{

}

pr->next=temp;
temp->prev=pr;
temp->next=cr;

\cr—>prev=temp;

N

30

NULL

A 4

A

head pr cr
AN /.,
NULL| 10 < X 20
\ / N\ y
\\ !
40 NULL

temp

30

NULL

18

UNIT -1

Code to insert a node at a position

template <class T>
void dlist<T>::Insert_at_pos(int pos)

{
struct dnode<T>*cr,*pr,*temp;
int count=1,;
cout<<"Enter data into dnode:";
cin>>data;
temp=create_dnode(data);
display();
if(head==NULL)
{/Iwhen list is empty
head=temp;
}
else
{ pr=cr=head;

if(pos==1)

{ /finserting at pos=1
temp->next=head;
head=temp;

}

else

{
while(count<pos)
{ count++;

pr=cr;
cr=cr->next;
}
pr->next=temp;
temp->prev=pr;
temp->next=cr;
cr->prev=temp;

}

}
}

Deletions: Removing an element from the list, without destroying the integrity of the list itself.
To place an element from the list there are 3 cases :

1. Delete a node at beginning of the list

2. Delete a node at end of the list

3. Delete a node at a given position

Case 1: Delete a node at beginning of the list

head

NULL |10 4 20 g 30 NULL

A
A

UNIT -1

head is the pointer variable which contains address of the first node

sample code is

t=head;

head=head->next;

head->prev=NULL,;

cout<<"dnode "<<t->data<<" Deletion is sucess";
delete(t);

head

A 4

NULL | 20

A
A

A\ 4

NULL \g(

code for deleting a node at front

template <class T>
void dlist<T>:: delete_front()
{struct dnode<T>*t;
if(head==NULL)
cout<<"List is Empty\n";

else
{ t=head;
head=head->next;
head->prev=NULL;
cout<<"dnode "<<t->data<<" Deletion is sucess";
delete(t);
}

}

Case 2. Delete a node at end of the list

30

NULL

To deleted the last node find the last node. find the node using following code

Gruct dnode<T>*pr,*cr;

pr=cr=head;
while(cr->next!=NULL)
{ pr=cr;

cr=cr->next;

}

pr->next=NULL;

cout<<"dnode "<<cr->data<<" Deletion is sucess";
Qelete(cr);

3

20

UNIT -1

head /

A 4

NULL | 10 b 20 NULL :/x > 3 |NuLL
; o/
code for deleting a node at end of the list
template <class T>
void dlist<T>::delete_end()
{
struct dnode<T>*pr,*cr;
pr=cr=head;
if(head==NULL)
cout<<"List is Empty\n";
else
{ cr=pr=head;
if(head->next==NULL)
{
cout<<"dnode "<<cr->data<<" Deletion is sucess";
delete(cr);
head=NULL,;
}
else
{ while(cr->next!=NULL)
{ pr=cr;
Cr=cr->next;
}
pr->next=NULL;
cout<<"dnode "<<cr->data<<" Deletion is sucess";
delete(cr);
}
}
}
CASE 3. Delete a node at a given position
head
NULL 10 P 30 P > 20 NULL

Delete node at position 2

head is the pointer variable which contains address of the first node. Node to be deleted is node

containing value 30.
Finding node at position 2.

21

UNIT -1

Kwhile(cou nt<pos) \

{ pr=cr;
cr=cr->next;
count++;

}

pr->next=cr->next;

kcr->next->prev=pr; / :

head

/ 30 < 20 NULL

NULL 10

N N

cr

pr

code for deleting a node at a position

template <class T>
void dlist<T>::Delete_at_pos(int pos)

{
struct dnode<T>*cr,*pr,*temp;
int count=1;
display();
if(head==NULL)
{
cout<<"List is Empty\n";
}
else
{ pr=cr=head;
if(pos==1)
head=head->next;
head->prev=NULL;
cout<<cr->data <<"is deleted sucesfully";
delete cr;
}
else
{
while(count<pos)
{ count++;
pr=cr;
Cr=cr->next;
}
pr->next=cr->next;
cr->next->prev=pr;
cout<<cr->data <<"is deleted sucesfully";
delete cr;
}
}

UNIT -1

[Dynamic Implementation of Doubly linked list ADT

#include<iostream.h>
template <class T>
struct dnode

{

T data;

struct dnode<T> *prev;
struct dnode<T> *next;

¥
template <class T>
class dlist
{
int data;
struct dnode<T>*head;
public:
dlist();
struct dnode<T>*create_dnode(int n);
void insert_front();
void insert_end();
void Insert_at_pos(int pos);
void delete_front();
void delete_end();
void Delete_at_pos(int pos);
void dnode_count();
void display();
¥

template <class T>
dlist<T>::dlist()
{

}

template <class T>

struct dnode<T>*dlist<T>::create_dnode(int n)

{

struct dnode<T> *t;
t=new struct dnode<T>;
t->data=n;
t->next=NULL;
t->prev=NULL;

return t;

}

template <class T>

void dlist<T>::insert_front()

{

struct dnode <T>*t,*temp;
cout<<"Enter data into dnode:";

head=NULL;

UNIT -1

cin>>data;
temp=create_dnode(data);
if(head==NULL)

head=temp;

else

{ temp->next=head; head-
>prev=temp;
head=temp;

}

¥

template <class T>

void dlist<T>::insert_end()
{

struct dnode<T> *t,*temp;
int n;

cout<<"Enter data into dnode:";

cin>>n;

temp=create_dnode(n);

if(head==NULL)
head=temp;

else

{ t=head;

while(t->next!=NULL)

t=t->next;
t->next=temp;
temp->prev=t;

template <class T>

void dlist<T>::Insert_at_pos(int pos)
{

struct dnode<T>*cr,*pr,*temp;

int count=1,;

cout<<"Enter data into dnode:";

cin>>data;
temp=create_dnode(data);
display();
if(head==NULL)

{/Iwhen list is empty

head=temp;
}
else
{ pr=cr=head;
if(pos==1)

{ /linserting at pos=1
temp->next=head;

head=temp;

else

24

UNIT -1

while(count<pos)

{ count++;
pr=cr;
cr=cr->next;

}

pr->next=temp;

temp->prev=pr;

temp->next=cr;
cr->prev=temp;

¥

template <class T>
void dlist<T>:: delete_front()
{struct dnode<T>*t;
if(head==NULL)
cout<<"List is Empty\n";

else
{ display();
t=head;
head=head->next;
head->prev=NULL;
cout<<"dnode "<<t->data<<" Deletion is sucess";
delete(t);
}

}

template <class T>
void dlist<T>::delete_end()
{
struct dnode<T>*pr,*cr;
pr=cr=head;
if(head==NULL)
cout<<"List is Empty\n";
else
{ cr=pr=head,;
if(head->next==NULL)

{
cout<<"dnode "<<cr->data<<" Deletion is sucess";
delete(cr);
head=NULL;
}
else
{ while(cr->next!=NULL)
{ pr=cr;
cr=cr->next;
}

pr->next=NULL,;
cout<<"dnode "<<cr->data<<" Deletion is sucess";
delete(cr);

25

UNIT -1

}
}
template <class T>
void dlist<T>::Delete_at_pos(int pos)

{
struct dnode<T>*cr,*pr,*temp;
int count=1;
display();
if(head==NULL)
{
cout<<"List is Empty\n";
}
else
{ pr=cr=head;
if(pos==1)
head=head->next;
head->prev=NULL;
cout<<cr->data <<"is deleted sucesfully";
delete cr;
}
else
{
while(count<pos)
{ count++;
pr=cr;
cr=cr->next;
}
pr->next=cr->next;
cr->next->prev=pr;
cout<<cr->data <<"is deleted sucesfully";
delete cr;
}
}
}

template <class T>
void dlist<T>::dnode_count()
{
struct dnode<T>*t;
int count=0;

display();

t=head;

if(head==NULL)

cout<<"List is Empty\n";

else
{ while(t'=NULL)
{ count++;
t=t->next;
}

cout<<"node count is "<<count;

26

UNIT -1

}
}
template <class T>
void dlist<T>::display()

{
struct dnode<T>*t;
if(head==NULL)
{
cout<<"List is Empty\n";
}
else
{ cout<<"Nodes in the linked list are ...\n";
t=head;
while(t'=NULL)
{ cout<<t->data<<"<=>";
t=t->next;
}
}
}
int main()
{
int ch,pos;
dlist <int> DL;
while(1)
{

cout<<"\n ***Qperations on Doubly List***"<<endl;

cout<<"\nl.Insert dnode at End"<<end];
cout<<"2.Insert dnode at Front"<<endl;
cout<<"3.Delete dnode at END"<<endl;
cout<<"4.Delete dnode at Front"<<endl;
cout<<"5.Display nodes "<<endl;
cout<<"6.Count Nodes"<<endl;
cout<<"7.Insert at a position "<<endl;
cout<<"8.Delete at a position "<<endl;
cout<<"9.Exit "<<endl;
cout<<"10.Clear Screen "<<endl;
cout<<"Enter Your choice:";

cin>>ch;
switch(ch)
{
case 1: DL.insert_end();
break;
case 2: DL.insert_front();
break;
case 3:DL.delete_end();
break;
case 4:DL.delete_front();
break;
case 5://display contents
DL.display();
break;

27

UNIT -1

case 6: DL.dnode_count();
break;

case 7: cout<<"Enter position to insert";
cin>>pos;
DL.Insert_at_pos(pos);
break;

case 8: cout<<"Enter position to Delete";
cin>>pos;
DL.Delete_at_pos(pos);
break;

case 9:exit(0);

case 10:system(*'cls™);
break;

default:cout<<"Invalid choice";

¥

CIRCULARLY LINKED LIST

A circularly linked list, or simply circular list, is a linked list in which the last node is always points
to the first node. This type of list can be build just by replacing the NULL pointer at the end of the list
with a pointer which points to the first node. There is no first or last node in the circular list.

Advantages:
» Any node can be traversed starting from any other node in the list.
» There is noneed of NULL pointer to signal the end of the list and hence, all pointers contain
valid addresses.
» Incontrast to singly linked list, deletion operation in circular list is simplified as the search for
the previous node of an element to be deleted can be started from that item itself.

head

Dynamic Implementation of Circular linked list ADT]

#include<iostream.h>
#include<stdlib.h>

template <class T>

struct cnode

{

T data;

struct cnode<T> *link;

h

/ICode fot circular linked List ADT
template <class T>

28

UNIT -1

class clist
{
int data;
struct cnode<T>*head;
public:
clist();
struct cnode<T>* create_cnode(int n);
void display();
void insert_end();
void insert_front();
void delete_end();
void delete_front();
void cnode_count();

%

/Icode for defaut constructor
template <class T>
clist<T>::clist()

{
¥

//code to display elements in the list
template <class T>
void clist<T>::display()

head=NULL;

{
struct cnode<T>*t;
if(head==NULL)
{
cout<<"clist is Empty\n";
}
else
{ t=head;
if(t->link==head)
cout<<t->data<<"->";
else
{

cout<<t->data<<"->";

t=t->link;

while(t!=head)

{
cout<<t->data<<"->";
t=t->link;

}

}
}
}

//Code to create node
template <class T>
struct cnode<T>* clist<T>::create_cnode(int n)

29

UNIT -1

{

struct cnode<T> *t;
t=new struct cnode<T>;
t->data=n;
t->link=NULL;

return t;

}

/ICode to insert node at the end

template <class T>

void clist<T>::insert_end()

{

struct cnode<T>*t;

struct cnode<T>*temp;

intn;
cout<<"Enter data into cnode:";
cin>>n;
temp=create_cnode(n);
if(head==NULL)
{
head=temp;
temp->link=temp;
}
else
{
t=head;
if(t->link==head)// list containing only one node
{
t->link=temp;
temp->link=t;
}
else
{
while(t->link!=head)
{
t=t->link;
}
t->link=temp;
temp->link=head;
}
}
cout<<"Node inerted"<<endl;
}

/ICode to insert node at front

template <class T>

void clist<T>::insert_front()

{

struct cnode <T>*t;

struct cnode<T>*temp;
cout<<"Enter data into cnode:";
cin>>data;

UNIT -1

temp=create_cnode(data);
if(head==NULL)

{
head=temp;
temp->link=temp;
}
else
{
t=head,;
if(t->link==head)
{
t->link=temp;
temp->link=t;
}
else
{
/Icode to find last node
while(t->link!=head)
{
t=t->link;
t->link=temp; //linking last and first node
temp->link=head,;
head=temp;
}
}
cout<<"Node inserted \n";

}

/ICode to delete node at end

template <class T>

void clist<T>::delete_end()

{

struct cnode<T>*cur,*prev;
cur=prev=head;
if(head==NULL)

cout<<"clist is Empty\n";

else
{ cur=prev=head;
if(cur->link==head)
{
cout<<"cnode "<<cur->data<<" Deletion is sucess";
free(cur);
head=NULL;
}
else
{ while(cur->link!=head)
{ prev=cur;

cur=cur->link;

¥

31

UNIT -1

/lprev=cur;

/lcur=cur->link;

prev->link=head;//points to head

cout<<"cnode "<<cur->data<<" Deletion is sucess";
free(cur);

}
}
/ICode to delete node at front
template <class T>
void clist<T>::delete_front()
{
struct cnode<T>*t,*temp;

if(head==NULL)

cout<<"circular list is Empty\n";

else
{ t=head;
/lhead=head->link;
if(t->link==head)
{
head=NULL;
cout<<"cnode "<<t->data<<" Deletion is sucess";
delete(t);
}
else
/Icode to find last node
while(t->link!=head)
{
t=t->link;
}
temp=head;
t->link=head->link; //linking last and first node
cout<<"cnode "<<temp->data<<" Deletion is sucess";
head=head->link;
delete(temp);
}

}

/ICode to count nodes in the circular linked list
template <class T>
void clist<T>::cnode_count()
{
struct cnode<T>*t;
int c=0;
t=head;
if(head==NULL)
{

cout<<"circular list is Empty\n";

¥

32

UNIT -1

else
{ t=t->link;
c++;
while(t!=head)
{ c++;
t=t->link;
}

cout<<"Node Count="<<c;

¥
¥

int main()
{
int ch,pos;
clist <int> L;
while(1)
{
cout<<"\n ***Qperations on Circular Linked clist***"<<endl;
cout<<"\nl.Insert cnode at End"<<endl;
cout<<"2.Insert Cnode at Front"<<endl;
cout<<"3.Delete Cnode at END"<<endl;
cout<<"4,Delete Cnode at Front"<<endl;
cout<<"5.Display Nodes "<<endl,
cout<<"6.Cnode Count"<<endl;
cout<<"7.Exit "<<endl;
cout<<"8.Clear Screen "<<endl;
cout<<"Enter Your choice:";
cin>>ch;
switch(ch)
{
case 1: L.insert_end();
break;
case 2: L.insert_front();
break;
case 3:L.delete_end();
break;
case 4:L.delete_front();
break;
case 5://display contents
L.display();
break;
case 6: L.cnode_count();
break;
case 7:exit(0);
case 8:system("cls");
break;
default:cout<<"Invalid choice";

33

Stack: Stack ADT, array and linked list implementation, Applications- expression conversion and |
evaluation. Queue: Types of Queue: Simple Queue, Circular Queue, Queue ADT- array and linked |
list implementation. Priority Queue, heaps.

STACK ADT:- A Stack is a linear data structure where insertion and deletion of items takes place
at one end called top of the stack. A Stack is defined as a data structure which operates on a last-in
first-out basis. So it is also is referred as Last-inFirst-out(LIFO).

Stack uses a single index or pointer to keep track of the information in the stack. The basic
operations associated with the stack are:

a) push(insert) an item onto the stack.

b) pop(remove) an item from the stack.

The general terminology associated with the stack is as follows:

A stack pointer keeps track of the current position on the stack. When an element is placed
on the stack, it is said to be pushed on the stack. When an object is removed from the stack, it is
said to be popped off the stack. Two additional terms almost always used with stacks are
overflow, which occurs when we try to push more information on a stack that it can hold, and
underflow, which occurs when we try to pop an item off a stack which is empty.

Pushing items onto the stack:

(6]
LS| Push y
4) Push v [5
3 Push y ra 4]
2 |~ Push y 3] 3 3
s 3 B+ 3 B ¢ 3 B+ 3
K 1 1 1 [1]

Assume that the array elements begin at O (because the array subscript starts from 0)

and the maximum elements that can be placed in stack is max. The stack pointer, top, is considered to
be pointing to the top element of the stack. A push operation thus involves adjusting the stack pointer
to point to next free slot and then copying data into that slot of the stack. Initially the top is initialized
to-1.

/Icode to push an element on to stack;
template<class T>
void stack<T>::push()
{
if(top==max-1)
cout<<"Stack Overflow...\n";

else
{
cout<<"Enter an element to be pushed:";
top++;
cin>>data;
stk[top]=data;
cout<<"Pushed Sucesfully....\n";
}

Popping an element from stack:
Toremove an item, first extract the data from top position in the stack and then decrement the
stack pointer, top.

/Icode to remove an element from stack
template<class T>
void stack<T>::pop()

{
if(top= =-1)
cout<<"Stack is Underflow";
else
{
data=stk[top];
top--;
cout<<data<<"is poped Sucesfully....\n";
}
}
[Static implementation of Stack ADT J :

#include<stdlib.h>
#include<iostream.h>
#define max 4
template<class T>

class stack
{ -
private:
int top;
T stk[max],data;
public:
stack();
void push();
void pop();
void display();
3

template<class T>
stack<T>::stack()

{
top=-1;

35

¥

/Icode to push an element on to stack;
template<class T>
void stack<T>::push()

{
if(top==max-1)
cout<<"Stack Overflow...\n";
else
{
cout<<"Enter an element to be pushed:";
top++;
cin>>data;
stk[top]=data;
cout<<"Pushed Sucesfully....\n";
}
}

/Icode to remove an element from stack
template<class T>
void stack<T>::pop()

if(top==-1)

cout<<"Stack is Underflow";
else

data=stk[top];

top--;

cout<<data<<"is poped Sucesfully....\n";
}

}
/lcode to display stack elements
template<class T>

void stack<T>::display()

{
if(top==-1)
cout<<"Stack Under Flow";
else
{ cout<<"Elements in the Stack are....\n";
for(int i=top;i>-1;i--)
{
cout<<<<stk[i]<<"\n";
}
}
}
int main()
{
int choice;
stack <int>st;
while(1)
{

cout<<"\n*****Menu for Stack operations*****\n",
cout<<"1.PUSH\n2.POP\n3.DISPLAY\n4.EXIT\n";

36

cout<<"Enter Choice:";
cin>>choice;
switch(choice)

{
case 1: st.push();

break;

case 2: st.pop();

break;
case 3: st.display();
break;

case 4: exit(0);

default:cout<<"Invalid choice...Try again..

¥

output:

x**Menu for Stack operations**
1.PUSH

2.POP

3.DISPLAY

4.EXIT

Enter Choice:1

Enter an element to be pushed:11
Pushed Sucesfully....

*****Menu for Stack operations*****
1.PUSH

2.POP

3.DISPLAY

4. EXIT

Enter Choice:1

Enter an element to be pushed:22
Pushed Sucesfully....

x**Menu for Stack operations**
1.PUSH

2.POP

3.DISPLAY

4.EXIT

Enter Choice:1

Enter an element to be pushed:44
Pushed Sucesfully....

*****Menu for Stack operations*****
1.PUSH

2.POP

3.DISPLAY

4.EXIT

Enter Choice:1

Enter Choice:1

Enter an item to be pushed:55

Pushed Sucesfully....

An

37

*x*x**Menu for Stack operations*****
1.PUSH

2.POP

3.DISPLAY

4.EXIT

Enter Choice:1

Stack Overflow...

x**Menu for Stack operations**
1.PUSH

2.POP

3.DISPLAY

4.EXIT

Enter Choice:2

55 is poped Sucesfully....

x**Menu for Stack operations**
1.PUSH

2.POP

3.DISPLAY

4. EXIT

Enter Choice:3

Elements in the Stack are....

44

22

11

+**Menu for Stack operations**
1.PUSH

2.POP

3.DISPLAY

4.EXIT

Enter Choice:4

Dynamic implementation of Stack ADT

#include<iostream.h>
template <class T>
struct node
{
T data;
struct node<T> *link;
h
template <class T>
class stack
{
int data;
struct node<T>*top;

38

public:
stack()

{

}

void display();
void push();
void pop();

top=NULL,;

h
template <class T>
void stack<T>::display()

{
struct node<T>*t;
if(top==NULL)
cout<<"stack is Empty\n";
}
else
{ t=top;
while(t!'=NULL)
{ cout<<"|"<<t->data<<"|"<<endl;
t=t->link;
}
}
}

template <class T>

void stack<T>::push()

{

struct node <T>*t,*temp;
cout<<"Enter data into node:";
cin>>data;
temp=new struct node<T>;
temp->data=data;
temp->link=NULL,;
if(top==NULL)

top=temp;

else

{ temp->link=top;
top=temp;

}

template <class T>
void stack<T>::pop()
{
struct node<T>*t;
if(top==NULL)
cout<<"stack is Empty\n";

39

else

{ t=top;
top=top->link;
cout<<"node "<<t->data<<" Deletion is sucess";
delete(t);
}
}
int main()
{
int ch;
stack <int> st;
while(1)
{
cout<<"\n ***Qperations on Dynamic stack***"<<endl;
cout<<"\n1.PUSH"<<end];
cout<<"2.POP"<<endl;
cout<<"3.Display "<<endl;
cout<<"4.Exit "<<endl;
cout<<"Enter Your choice:";
cin>>ch;
switch(ch)
{
case 1: st.push();
break;
case 2: st.pop();
break;
case 3:st.display();;
break;
case 4:exit(0);
default:cout<<"Invalid choice";
}
}
}

Applications of Stack:

1. Stacks are used in conversion of infix to postfix expression.
2. Stacks are also used in evaluation of postfix expression.

3. Stacks are used to implement recursive procedures.

4. Stacks are used in compilers.

5. Reverse String

An arithmetic expression can be written in three different but equivalent notations, i.e., without
changing the essence or output of an expression. These notations are—

1. Infix Notation

2. Prefix (Polish) Notation

3. Postfix (Reverse-Polish) Notation

40

Expression | Example Note

Infix a+b Operator Between Operands
Prefix +ab Operator before Operands
Postfix ab+ Operator after Operands

Conversion of Infix Expressions to Prefix and Postfix

Infix Expression Prefix Expression Postfix Expression
A+B*C+D ++A*BCD ABC*+D+
(A+B)*(C+D) *+AB+CD AB+CD+*
A*B+C*D +*AB*CD AB*CD*+
A+B+C+D +++ABCD AB+C+D+

Convert following infix expression to prefix and postfix
(A+B)*C-(D-E)* (F+G)

(A+B)"C-(D-E)"(F+G)

((A+B)*C)-((D-E)" (F+Q)))
\

Prefix Postfix

‘+tABC*'-DE+FG AB+C*DE-FG+"*

The Tower of Hanoi (also called the Tower of Brahma or Lucas' Tower,[1] and sometimes
pluralized) is a mathematical game or puzzle. It consists of three rods, and a number of disks of
different sizes which can slide onto any rod. The puzzle starts with the disks in a neat stack in
ascending order of size on one rod, the smallest at the top, thus making a conical shape.

41

The objective of the puzzle is to move the entire stack to another rod, obeying the following simple
rules:

1. Only one disk can be moved at a time.

2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another
stack i.e. a disk can only be moved if it is the uppermost disk on a stack.

3. No disk may be placed on top of a smaller disk.

I MK
| | I (1) ‘ I I
A B C A B C
) I I I (52 | (4] | | |
A 3] L F 7] L A 7] L
{5) I | I {6 | | I 7 I ‘ |
A B C A B C A B C
QUEUE ADT

A queue is an ordered collection of data such that the data is inserted at one end and deleted from
another end. The key difference when compared stacks is that in a queue the information stored is
processed first-in first-out or FIFO. In other words the information receive from a queue comes in the
same order that it was placed on the queue.

Insertion

Deletion

Front end Rear end

Representing a Queue:
One of the most common way to implement a queue is using array. An easy way to do so is to
define anarray Queue, and two additional variables front and rear. The rules for manipulating these
variables are
simple:

» Each time information is added to the queue, increment rear.

» Each time information is taken from the queue, increment front.

» Whenever front >rear or front=rear=-1 the queue isempty.
Array implementation of a Queue do have drawbacks. The maximum queue size has to be set at
compile time, rather than at run time. Space can be wasted, if we do not use the full capacity of the
array.

Operations on Queue:

A queue have two basic operations:

a)adding new item to the queue

b) removing items from queue.

The operation of adding new item on the queue occurs only at one end of the queue called the rear or
back.

The operation of removing items of the queue occurs at the other end called the front.

For insertion and deletion of an element from a queue, the array elements begin at 0 and the
maximum elements of the array is maxSize. The variable front will hold the index of the item that is
considered the front of the queue, while the rear variable will hold the index of the last item in the
queue.

Assume that initially the front and rear variables are initialized to -1. Like stacks, underflow
and overflow conditions are to be checked before operations in a queue.

if((front>rear)|/front= =-1)

cout<”’Queue is empty”;

if((rear==max)
cout<’Queue is full”; ;

[Static implementation of Queue ADT]

#include<stdlib.h>
#include<iostream.h>
#define max 4
template <class T>
class queue
{
T q[max],item;
int front,rear;
public: queue();
void insert_q();
void delete_q();
voiddisplay_q();
};
template <class T>
queue<T>::queue()

{
¥

/lcode to insert an item into queue;
template <class T>
void queue<T> ::insert_q()

front=rear=-1;

if(front>rear)
front=rear=-1;
if(rear==max-1)
cout<<"queue Overflow..\n";

else
{
if(front==-1)
front=0;
rear++;
cout<<"Enter an item to be inserted:";
cin>>item;

g[rear]=item;
cout<<"inserted Sucesfully..into queue..\n";
}
}
template <class T>
void queue<T>::delete_q()
{
if((front==-1&&rear==-1)||front>rear)
{
front=rear=-1;
cout<<"queue is Empty ..\n";
}
else
{
item=q[front];
front++;
cout<<item<<" isdeleted Sucesfully...\n";
}
}
template <class T>
void queue<T>::display_q()

{
if((front==-1&&rear==-1)||front>rear)
{
front=rear=-1;
cout<<"queue is Empty ..\n";
}
else
{
for(int i=front;i<=rear;i++)
cout<<"|"<<q[i]<<"|<--";
}
}
int main()
{
int choice;
queue<int> q;
while(1)
{

cout<<"\n\n*****Menu for operations on QUEUE*****\n\n";
cout<<"1.INSERT\n2.DELETE\n3.DISPLAY\n4.EXIT\n";

44

cout<<"Enter Choice:";

cin>>choice;
switch(choice)
{
case 1: g.insert_q();
break;
case 2: g.delete_q();
break;
case 3: cout<<"Elements in the queue are...\n";
g.display_q();
break;

case 4: exit(0);
default: cout<<"Invalid choice...Try again...\n";

Dynamic implementation of Queue ADT

#include<stdlib.h>
#include<iostream.h>
template <class T>
struct node

{
T data;
struct node<T>*next;
j3
template <class T>
class queue
{ -
private:
T item;
node<T> *front,*rear;
public:
queue();
void insert_q();
void delete_q();
voiddisplay_q();
j

template <class T>
queue<T>::queue()

{
¥

/Icode to insert an item into queue;
template <class T>
void queue<T>::insert_q()
{
node<T>*p;
cout<<"Enter an element to be inserted:";

front=rear=NULL;

45

cin>>item;
p=new node<T>;
p->data=item;
p->next=NULL,;
if(front==NULL)
{
rear=front=p;
}
else
{
rear->next=p;
rear=p;
}
cout<<"\nInserted intoQueue Sucesfully...\n";
}
/lcode to delete an elementfrom queue
template <class T>
void queue<T>::delete_q()
{
node<T>*t;
if(front==NULL)
cout<<"\nQueue is Underflow";
else
{
item=front->data;
t=front;
front=front->next;

}
delete(t);

cout<<"\n"<<item<<" is deletedfrom Queue...

¥

/Icode to display elements in queue
template <class T>
void queue<T>::display_q()

{
node<T>*t;
if(front==NULL)
cout<<"\nQueue Under Flow";
else
{
cout<<"\nElements in theQueue are...\n";
t=front;
while(t'=NULL)
{
cout<<"|"<<t->data<<"|<-";
t=t->next;
}
}
}
int main()
{
int choice;

queue<int>ql;

\n

46

while(1)
{
cout<<"\n\n***Menu for operations on Queue***\n\n";
cout<<"1.Insert\n2.Delete\n3.DISPLAY\n4.EXIT\n";
cout<<"Enter Choice:";
cin>>choice;
switch(choice)
{
casel: ql.insert_q();
break;
case 2:ql.delete_q();
break;
case 3: ql.display_q();
break;
case 4: exit(0);
default: cout<<"Invalid choice...Try again...\n";

SR

Application of Queue:

Queue, as the name suggests is used whenever we need to have any group of objects inan order in
which the first one coming in, also gets out first while the others wait for there turn, like in the
following scenarios :

1. Serving requests on a single shared resource, like a printer, CPU task scheduling etc.

2. Inreal life, Call Center phone systems will use Queues, to hold people calling them in an order,
until a service representative is free.

3. Handling of interrupts in real-time systems. The interrupts are handled in the same order as they
arrive, First come first served.

CIRCULAR QUEUE
Once the queue gets filled up, no more elements can be added to it even if any element is removed
from it consequently. This is because during deletion, rear pointer is not adjusted.

Insertion 1s not possible
since rear pomts to last element of array

F

11 55

'

Empty locations
Front ERear

When the queue contains very few items and the rear pointer points to last element. i.e.
rear=maxSize-1, we cannot insert any more items into queue because the overflow condition satisfies.
That means a lot of space is wasted

.Frequent reshuffling of elements is time consuming. One solution to this is arranging all
elements in a circular fashion. Such structures are often referred to as Circular Queues.

47

A circular queue is a queue in which all locations are treated as circular such that the first
location CQJ0] follows the last location CQ[max-1].

[if(front==-1)

cout<<"Queueis empty"; J

................................

if(front==(rear+1)%max)

{
}

cout<<"Circular Queue is full\n";

Example: Consider the following circular queue with N = 5.

1. Initially, Rear = 0, Front = 0. 4. Insert 20, Rear = 3, Front = 0.
l 3 Front | _—" .
' (~)}
Y " J, Rea
2. Insert 10, Rear =1, Front = 1. 5. Insert 70, Rear = 4, Front = 1.
Rear , —T 2 o7 B
r";:” b 1 ‘ Front —a__.-—n]’ ‘
1 I [|
=y P.Ifr[?‘%*
3. Insert 50, Rear = 2, Front = 1. 6. Delete front, Rear =4, Front = 2.
Front | “T3 Rear _' \r ; ~_Front
— Rear *

Insertion into a Circular Queue:
Algorithm CQueuelnsertion(Q,maxSize,Front,Rear,item)
Step 1: If Rear = maxSize-1 then
Rear =0
else
Rear=Rear+1
Step 2: If Front = Rear then
print “Queue Overflow”
Return
Step 3: Q[Rear] = item

48

Step 4: If Front = 0 then
Front=1
Step 5: Return

Deletion from Circular Queue:

Algorithm CQueueDeletion(Q,maxSize,Front,Rear,item)
Step 1: If Front = 0 then
print “Queue Underflow”
Return
Step 2: K=Q[Front]
Step 3: If Front = Rear then

begin
Front=-1
Rear =-1

end

else

If Front = maxSize-1 then
Front=0

else

Front = Front + 1
Step 4: Return K

Static implementation of Circular Queue ADT

#include<iostream.h>
#define max 4
template <class T>
class CircularQ
{
T cq[max];
int front,rear;
public:
CircularQ();
void insertQ();
void deleteQ();
void displayQ();
¥
template <class T>
CircularQ<T>::CircularQ()
{

}

template <class T>
void CircularQ<T>:: insertQ()
{

int num;
if(front==(rear+1)%max)

{
}

front=rear=-1;

cout<<"Circular Queue is full\n";

49

else

}

cout<<"Enter an element";
cin>>num;
if(front==-1)

rear=front=0;
else

rear=(rear+1)%max;
cq[rear]=num;
cout<<num <<" is inserted ...";

}

template <class T>
void CircularQ<T>::deleteQ()

if(front==-1)

{

int num;
else
{
}

}

cout<<"Queue is empty";

num=cq[front];
cout<<"Deleted item is "<< num;
if(front==rear)
front=rear=-1;
else
front=(front+1)%max;

template <class T>
void CircularQ<T>::displayQ()

L
int i;
if(front==-1)
cout<<"Queue is empty";
else
{ cout<<"Queue elementsare\n”;
for(i=front;i<=rear;i++)
cout<<cq[i]<<"\t";
if(front>rear)
for(i=front;i<max;i++)
cout<<cq[i]<<"\t";
for(i=0;i<=rear;i++)
cout<<cq[i]<<"\t";
}
}
int main()
{
CircularQ<int> obj;
int choice;
while(1)
{ cout<<"\n*** Circular Queue Operations***\n";

50

cout<<"\nl.insert Element into CircularQ";
cout<<"\n2.Delete Element from CircularQ";
cout<<"\n3.Display Elements in CircularQ";
cout<<"\n4.Exit ";

cout<<"\nEnter Choice:";

cin>>choice;
switch(choice)
{ case 1: obj.insertQ();
break;
case 2: obj.deleteQ();
break;
case 3: obj.displayQ();
break;

case 4: exit(0);

51

UNIT-2

Priority Queue
DEFINITION:
A priority queue is a collection of zero or more elements. Each element has a priority or value.
Unlike the queues, which are FIFO structures, the order of deleting from a priority queue is determined by the
element priority.
Elements are removed/deleted either in increasing or decreasing order of priority rather than in the order in
which they arrived in the queue.
There are two types of priority queues:
1 Min priority queue
1 Max priority queue

Min priority queue: Collection of elements in which the items can be inserted arbitrarily, but only smallest element
can be removed.

Max priority queue: Collection of elements in which insertion of items can be in any order but only largest element
can be removed.

In priority queue, the elements are arranged in any order and out of which only the smallest or largest element
allowed to delete each time.

The implementation of priority queue can be done using arrays or linked list. The data structure heap is used
to implement the priority queue effectively.
APPLICATIONS:

1. The typical example of priority queue is scheduling the jobs in operating system. Typically OS allocates
priority to jobs. The jobs are placed in the queue and position of the job in priority queue determines their
priority. In OS there are 3 jobs- real time jobs, foreground jobs and background jobs. The OS always
schedules the real time jobs first. If there is no real time jobs pending then it schedules foreground jobs. Lastly
if no real time and foreground jobs are pending then OS schedules the background jobs.

2. In network communication, the manage limited bandwidth for transmission the priority queue isused.

3. Insimulation modeling to manage the discrete events the priority queue is used.

Various operations that can be performed on priority queue are-

1. Find an element

2. Inserta new element

3. Remove or delete an element

The abstract data type specification for a max priority queue is given below. The specification for a min priority
queue is the same as ordinary queue except while deletion, find and remove the element with minimum priority

ABSTRACT DATA TYPE(ADT):

Abstract data type maxPriorityQueue

{

Instances
Finite collection of elements, each has a priority Operations
empty():return true iff the queue is empty
size() :return number of elements in the queue
top() :return element with maximum priority
del() :remove the element with largest priority from the queue
insert(x): insert the element x into the queue

52

UNIT-2

¥
HEAPS

Heap is a tree data structure denoted by either a max heap or a min heap.

A max heap is a tree in which value of each node is greater than or equal to value of its children nodes. A min
heap is a tree in which value of each node is less than or equal to value of its children nodes.

Max heap Min heap
Insertion of element in the Heap:

Consider a max heap as given below:

7N
OO

Now if we want to insert 7. We cannot insert 7 as left child of 4. This is because the max heap has a property that
value of any node is always greater than the parent nodes. Hence 7 will bubble up 4 will be left child of 7.

Note: When a new node is to be inserted in complete binary tree we start from bottom and from left child on the
current level. The heap is always a complete binary tree.

53

UNIT-2

e o -« inserted!

If we want to insert node 25, then as 25 is greatest element it should be the root. Hence 25 will bubble up and 18

will move down.
4— inserted!

The insertion strategy just outlined makes a single bubbling pass from a leaf toward the root. At each level we
do (1) work, so we should be able to implement the strategy to have complexity O(height) = O(log n).

void Heap::insert(int item)

{
int temp; /ltemp node starts at leaf and moves up.
temp=++size;
while(temp!=1 && heap[temp/2]<item) //moving element down
{
H[temp] = H[temp/2]; temp=temp/2;
/[finding the parent
¥
H[temp]=item;
¥

Deletion of element from the heap:

54

UNIT-2

For deletion operation always the maximum element is deleted from heap. In Max heap the maximum
element is always present at root. And if root element is deleted then we need to reheapify the tree.

Consider a Max heap

Delete root element:25, Now we cannot put either 12 or 18 as root node and that should be greater than all its
children elements.

Now we cannot put 4 at the root as it will not satisfy the heap property. Hence we will bubble up 18 and place 18 at
root, and 4 at position of 18.

If 18 gets deleted then 12 becomes root and 11 becomes parent node of 10.

55

UNIT-2

(=)

/ \ Make tree a complete binary tree.

()
/

)

Thus deletion operation can be performed. The time complexity of deletion operation is O(log n).
1. Remove the maximum element which is present at the root. Then a hole is created at the root.
2. Now reheapify the tree. Start moving from root to children nodes. If any maximum element is found then
place it at root. Ensure that the tree is satisfying the heap property or not.
3. Repeat the step 1 and 2 if any more elements are to be deleted.

void heap::delet(int item)

{

int item, temp;

if(size==0)

cout<<’Heap is empty\n”; else

{

/Iremove the last elemnt and reheapify
item=H[size--];

/litem is placed at root temp=1,;
child=2;

while(child<=size)

{

if(child<size && H[child]<H[child+1]) child++;
if(item>=H[child])

break;

H[temp]=H]child];

temp=child;

child=child*2;

¥

/Ipl;ace the largest item at root
H[temp]=item;
¥

Applications Of Heap:

1. Heap is used in sorting algorithms. One such algorithm using heap is known as heap sort.

56

UNIT-2

2. In priority queue implementation the heap is used.
HEAP SORT

Heap sort is a method in which a binary tree is used. In this method first the heap is created using binary tree and then
heap is sorted using priority queue.

Eg:
25 57 48 38 10 91 84 33

In the heap sort method we first take all these elements in the array “A”

Al0] | A[] AlZl | Al3] Al4] Al Alf] All]
25 57 48 38 10 91 84 33

Now start building the heap structure. In forming the heap the key point is build heap in such a way that the
highest value in the array will always be a root.

Insert 25

@ Since 25<57. Therefore 57 isroot and 25 is left child

Insert 48

Insert57

Now since 48 js less than 37. So it cannot be a root.
So the root is 37. But 48>23 so it cannot be the left
/ \ child of 25. So attach 48 as a right child of 57.
@ @

57

UNIT-2

Insert 38

As 38 is higher than 25 so 38 becomes parent of 25

Insert 10

@ The element 101is attached in the left subtrees of 37
i.e_as aright child of 38. The 10 canbe attachedasa
left child of 25 orit can be attached asleft child of 25

oritcan be attached as left child of 48 even. But

alwavs we will assume to complete left sub tree
having both lett and right children so forthe sake of

I completion the node 10is attached to the right o 38
6

58

UNIT-2

Insert 91

6’ ./ 5’

91 is the largest elem ent compared to all other
elements naturallyit will be the root node.

Insert 84

/\—» /\

.‘.6.‘@

The next element is 84, which 91>84>57 the middle element. So 84 will be the parent of 57. For making the
complete binary tree 57 will be attached as right of 84.

59

UNIT-2

.H The next elementis 33. The

38>33>25 Somake 33 as a parent of
25 but child of 38.

./’

Insert 33

Now the heap is formed. Let us sort it. For sorting the heap remember two main things the first thing is that the
binary tree form of the heap should not be distributed at all. For the complete sorting binary tree should be remained.
And the second thing is that we will start sorting the higher elements at the end of array in sorted manner i.e..
A[7]=91, A[6]=84 and so on..

Step 1:- Exchange A[0] with A[7]

) @
/ \ ehea ify

&% 6’ 4 .

Queue|

60

UNIT-2

Step 2:-Exchane A[0] with A[6]

.-"“-\\
@

@/’ P

| | 84 | 951 |

61

UNIT-2

J:
K& 58

Step 3:-Exchane A[0] with A[5]

.i \\' ’i

@5* o :

l | 57 84 91

62

UNIT-2

SN e /®\
R -

8.5 oo

Step 4:-Exchane A[0] with A[4]

UNIT-2

Step 5:-Exchane A[0] with A[3]

Queue
|

reheapifv

9
s o= e

Step 5:-Exchane A[0] with A[2]

...............

&) e

Queue

64

UNIT-2

Step 6:-Exchane A[0] with A[1]

Step 0: The remaining element 10 has already occupied its proper position because only one position
15 empty so insert 10 also in the queue.

| 10 [25 | 33 | 38 | 48 | 57 | 84 [o1 |

Write a program to implement heap sort
#include<iostream.h>
void swap(int *a,int *b)

{

intt;
t=*a;
*a:*b;
*b=t;

void heapify(int arr[], int n, int i)

int largest = i; // Initialize largest as root
intl=2*+1;//left=2%+1
intr=2*i+2; //right=2%i+2

/I If left child is larger than root
if (I<n &&(arr[l] > arr[largest]))
largest = 1,

/I right child is larger than largest so far
if (r <n &&(arr[r] > arr[largest]))
largest =r;

65

/I If largest is not root
if (largest 1= 1)

swap(&arr[i], &arr[largest]);

Il Recursively heapify the affected sub-tree
heapify(arr, n, largest);
}
}

/I function to do heap sort
void heapSort(int arr[], int n)
{inti;
// Build heap (rearrange array)
for(i=n/2-1;i>=0;i--)
heapify(arr, n, i);

/I One by one extract an element from heap
for (iI=n-1; i>=0; i--)

{
/I Move current root to end
swap(&arr[0], &arr[i]);
/I call max heapify on the reduced heap
heapify(arr, i, 0);
b
¥

/* A utility function to print array of size n */
void printArray(int arr[], int n)

for (int i=0; i<n; ++i)
cout << arrfif << ™™
cout << "\n";
¥
int main()
{
int n,i;
int list[30];
cout<<"enter no of elements\n";
cin>>n;
cout<<"enter "<<n<<" numbers ";
for(i=0;i<n;i++)
cin>>list[i];
heapSort(list, n);
cout << "Sorted array is \n";
printArray(list, n);
return O;

}

66

UNIT -3

Searching: Linear and binary search methods.
Sorting: Bubble sort, selection sort, Insertion sort, Quick sort, Merge sort, Heap sort. Time complexities.
Graphs: Basic terminology, representation of graphs, graph traversal methods DFS, BFS.

ALGORITHMS

Definition: An Algorithm is a method of representing the step-by-step procedure for solving a
problem. It is a method of finding the right answer to a problem or to a different problem by
breaking the problem into simple cases.

It must possess the following properties:
1. Finiteness: An algorithm should terminate in a finite number of steps.
2. Definiteness: Each step of the algorithm must be precisely (clearly) stated.

3. Effectiveness: Each step must be effective.i.e; it should be easily convertible into
program statement and can be performed exactly in a finite amount of time.

4. Generality: Algorithm should be complete in itself, so that it can be used to solve all
problems of given type for any input data.

5. Input/Output: Each algorithm must take zero, one or more quantities as input data
and gives one of more output values.
An algorithm can be written in English like sentences or in any standard
representations. The algorithm written in English language is called Pseudo code.

Example: To find the average of 3 numbers, the algorithm is as shown below.
Stepl: Read the numbers a, b, ¢, and d.
Step2: Compute the sum of a, b, and c.
Step3: Divide the sum by 3.
Step4: Store the result in variable of d.
Step5: End the program.

Searching: Searching is the technique of finding desired data items that has been stored
within some data structure. Data structures can include linked lists, arrays, search trees, hash
tables, or various other storage methods. The appropriate search algorithm often depends on the
data structure being searched.
Search algorithms can be classified based on their mechanism of searching. They are

e Linear searching

e Binary searching
Linear or Sequential searching: Linear Search is the most natural searching method and
It is very simple but very poor in performance at times .In this method, the searching begins with

UNIT -3

searching every element of the list till the required record is found. The elements in the list may be
in any order. i.e. sorted or unsorted.

We Dbegin search by comparing the first element of the list with the target element. If it
matches, the search ends and position of the element is returned. Otherwise, we will move to next
element and compare. In this way, the target element is compared with all the elements until a
match occurs. If the match do not occur and there are no more elements to be compared, we
conclude that target element is absent in the list by returning position as -1.

For example consider the following list of elements.

55957585 11 2565 45

Suppose we want to search for element 11(i.e. Target element = 11). We first compare the
target element with first element in list i.e. 55. Since both are not matching we move on the next
elements in the list and compare. Finally we will find the match after 5 comparisons at position 4
starting from position 0.
Linear search can be implemented in two ways.i)Non recursive ii)recursive

Algorithm for Linear search

Linear_Search (A[], N, val , pos)
Stepl:Setpos=-landk=0
Step 2 : Repeat whilek < N
Begin
Step 3:if A[k] =val
Set pos = k
print pos
Goto step 5
End while
Step 4 : print “Value is not present”
Step 5 : Exit

[Non recursive C++ program for Linear search J -

#include<iostream>
using namespace std;
int Lsearch(int list[],int n,int key);
int main()
{
int n,i,key, list[25],pos;
cout<<"enter no of elements\n";
cin>>n;
cout<<"enter "<<n<<" elements ";
for(i=0;i<n;i++)
cin>>list[i];
cout<<"enter key to search";
cin>>key;
pos= Lsearch (list,n,key);
if(pos==-1)
cout<<"\nelement not found";
else

68

UNIT -3

cout<<"\n element found at index "<<pos;
}
[*function for linear search*/
int Lsearch(int list[],int n,int key)
{
int i,pos=-1,;
for(i=0;i<n;i++)
if(key==list[i])
{ -
pos=i;
break;

return pos;

¥

Run 1:
enter no of elements 5
enter 5 elements 99887 24
enter key to search 7
element found at index 2

Run 2:

enter no of elements 5

enter 5 elements 9988 7 2 4
enter key to search 88
element not found

[Recursive C++ program for Linear search

#include<iostream>

using namespace std;

int Rec_Lsearch(int list[],int n,int key);
int main()

{
int n,i,key, list[25],pos;
cout<<"enter no of elements\n';
cin>>n;
cout<<"enter "<<n<<" elements ";
for(i=0;i<n;i++)
cin>>list[i];
cout<<"enter key to search";
cin>>key;
pos=Rec_Lsearch(list,n-1,key);
if(pos==-1)
cout<<"\nelement not found";
else
cout<<"\n element found at index "<<pos;

69

UNIT -3

[*recursive function for linear search*/
int Rec_Lsearch(int list[],int n,int key)
{
if(n<0)

return -1;
if(list[n]==key)

return n;

else

return Rec_Lsearch(list,n-1,key);

¥

RUNZ1.:
enter no of elements 5
enter 5 elements 555 -4 99 7
enter key to search-4
element found at index 2

RUN 2:
enter no of elements 5
enter 5 elements 555 -4 99 7
enter key to search77
element not found

{ BINARY SEARCHING }

Binary search is a fast search algorithm with run-time complexity of O(log n). This search
algorithm works on the principle of divide and conquer. Binary search looks for a particular item
by comparing the middle most item of the collection. If a match occurs, then the index of item is
returned. If the middle item is greater than the item, then the item is searched in the sub-array to
the left of the middle item. Otherwise, the item is searched for in the sub-array to the right of the
middle item. This process continues on the sub-array as well until the size of the subarray reduces
to zero.

Before applying binary searching, the list of items should be sorted in ascending or
descending order.
Best case time complexity is O(1)
Worst case time complexity is O(log n)

UNIT -3

If searching for 23 in the 10-element array

2 5 8 12 | 16 | 23 | 38 | 56 | 72 | 91

- H
23 > 16,
take 2™ half 2 5 8 12 - 23 38 56 72 91
L

H
23 < 56, i
take 1% half | 23 | 38 - 72 | 91
L H
Found 23,
Return 5 ‘ - 38

Algorithm:
Binary_Search (A[], U_bound, VAL)
Step 1:set BEG =0, END =U_bound, POS = -1
Step 2 : Repeat while (BEG <= END)
Step 3 : set MID=(BEG+END)/ 2
Step 4 : if A[MID] == VAL then
POS = MID
print VAL “ is available at “, POS
GoTo Step 6
End if
if A[MID] > VAL then
set END=MID -1
Else
set BEG=MID + 1
End if
End while
Step 5: if POS = -1 then
print VAL “ is not present
End if
Step 6 : EXIT

[Non recursive C++ program for binary search]

#include<iostream>
using namespace std;
int binary_search(int list[],int key,int low,int high);
int main()
{
int n,i,key, list[25],pos;
cout<<"enter no of elements\n" ;

UNIT -3

¥

cin>>n;
cout<<"enter "<<n<<" elements in ascending order ";
for(i=0;i<n;i++)
cin>>list[i];
cout<<"enter key to search™ ;
cin>>key;
pos=binary_search(list,key,0,n-1);
if(pos==-1)
cout<<"element not found" ;
else
cout<<"element found at index "<<pos;

/* function for binary search*/
int binary_search(int list[],int key,int low,int high)

{

int mid,pos=-1,

Run 1:

Run 2:

while(low<=high)

mid=(low+high)/2;
if(key==list[mid])
{

pos=mid;
break;

}
else if(key<listfmid])
high=mid-1;
else
low=mid+1,;
}

return pos;

enter no of elements5

enter 5 elements in ascending order 11 22 33 44 55
enter key to search33

element found at index 2

enter no of elements5

enter 5 elements in ascending order 11 22 33 44 55
enter key to search21

element Not found

{

Recursive C++ program for binary search

#include<iostream>

using namespace std;

int rbinary_search(int list[],int key,int low,int high);
int main()

{

72

UNIT -3

int n,i,key, list[25],pos;
cout<<"enter no of elements\n" ;
cin>>n;
cout<<"enter "<<n<<" elements in ascending order ";
for(i=0;i<n;i++)
cin>>list[i];
cout<<"enter key to search™ ;
cin>>key;
pos=rbinary_search(list,key,0,n-1);
if(pos==-1)
cout<<"element not found" ;
else
cout<<"element found at index "<<pos;
}
[*recursive function for binary search*/
int rbinary_search(int list[],int key,int low,int high)
{
int mid,pos=-1,;
if(low<=high)

mid=(low+high)/2;
if(key==list[mid])
{
pos=mid;
return pos;

}
else if(key<listfmid])
return rbinary_search(list,key,low,mid-1);
else
return rbinary_search(list,key,mid+1,high);
}

return pos;

}

RUN 1:
enter no of elements 5
enter 5 elements in ascending order 11 22 33 44 66
enter key to search33
element found at index 2
RUN 2:
enter no of elements 5
enter 5 elements in ascending order 11 22 33 44 66
enter key to search77
element not found

g © SORTING

Arranging the elements in a list either inascending or descending order. various sorting

algorithms are
e Bubble sort

73

UNIT -3

e selection sort
e Insertion sort

e Quick sort
e Merge sort
e Heap sort

[Bubble sort]f

The bubble sort is an example of exchange sort. In this method, repetitive comparison is
performed among elements and essential swapping of elements is done. Bubble sort is commonly
used in sorting algorithms. It is easy to understand but time consuming i.e. takes more
number of comparisons to sort a list . In this type, two successive elements are compared and
swapping is done. Thus, step-by-step entire array elements are checked. It is different from the
selection sort. Instead of searching the minimum element and then applying swapping, two
records are swapped instantly upon noticing that they are not in order.

ALGORITHM:
Bubble_Sort (A[],N)
Step 1: Start
Step 2: Take an array of n elements
Step 3: for i=0,........cco..... n-2
Step 4: for j=i+1,....... n-1
Step 5: if arr[j]>arr[j+1] then
Interchange arr[j] and arr[j+1]
End of if

Step 6: Print the sorted array arr
Step 7:Stop

#include<iostream>

using namespace std;

void bubble_sort(int list[30],int n);

int main()

-

int n,i;

int list[30];
cout<<"enter no of elements\n';
cin>>n;
cout<<"enter "<<n<<" numbers ";
for(i=0;i<n;i++)
cin>>list[i];
bubble_sort (list,n);
cout<<" after sorting\n";
for(i=0;i<n;i++)
cout<<list[i]<<endl;

return O;

}

void bubble_sort (int list[30],int n)

74

UNIT -3

{
int temp ;
inti,j;
for(i=0;i<n;i++)
for(j=0;j<n-1;j++)
if(list[j]>list[j+1])
{
temp=list[j];
list[j]=list[j+1];
list[j+1]=temp;
}
}
RUN 1:
enter no of elements
5

enter 5numbers 54321
after sorting 1 2 34 5..

:

Selection sort]

selection sort:- Selection sort (Select the smallest and Exchange):

The first item is compared with the remaining n-1 items, and whichever of all is lowest, is
put in the first position.Then the second item from the list is taken and compared with the
remaining (n-2) items, if an item with a value less than that of the second item is found on the (n-
2) items, it is swapped (Interchanged) with the second item of the list and so on.

Selection Sort.

(3)(=]) 7
ENED €3

g8 9 (3]
8 9 5]

(1 3 s](8] 9o

(2. 3 5 7lisle]
s 3 5 7 & 9]

Selection_Sort (A[],N)
Step 1 :start

Step 2: Repeat For K=0to N -2

Begin
Step3: SetPOS=K

comparisons

(h-1) first smallest

(h-2) second smallest

(n-3) +third smallest

2

75

UNIT -3

Step4: RepeatforJ=K+1toN-1

Begin
IfA[J]<A[POS]
Set POS =
End For
Step5: Swap A[K]with A[POS]
End For
Step 6 : stop

#include<iostream>

using namespace std;

void selection_sort (int list[],int n);

int main()

L

int n,i;

int list[30];
cout<<"enter no of elements\n";
cin>>n;
cout<<"enter "<<n<<" numbers ";
for(i=0;i<n;i++)
cin>>list[i];
selection_sort (list,n);
cout<<" after sorting\n";
for(i=0;i<n;i++)
cout<<list[i]<<endl;

return O;

}

void selection_sort (int list[],int n)

{
int min,temp, i, j;
for(i=0;i<n;i++)

{ -
min=i;
for(j=i+1;j<n;j++)
if(list[j]<list[min])
min=j;
}
temp=list][i];
list[i]=list[min];
listfmin]=temp;
}
}
RUN 1:
enter no of elements
5

enter 5 numbers54321
after sorting 12345

76

UNIT -3

[| N SOR];
Insertion sort: It iterates, consuming one input element each repetition, and growing a sorted
output list. Each iteration, insertion sort removes one element from the input data, finds the
location it belongs within the sorted list, and inserts it there. It repeats until no input elements
remain.

Checking second element of
array with element before

i
¥ | | it and inserting it in proper
=
Step:d 12 ’ 3 ‘ ! ‘ > | 8 I position. In this case, 3 is
f inserted in position of 12.
J Checking third element of
’ *) l array with elements before
b y it and inserting it in proper
Step:2 2 ’ 12 ‘ 1 ‘ > | 8 | position. In this case, 1is
¢ [inserted in position of 3.
[I Checking fourth element of
* r 2 ' array with elements before
Step 3 1 3 12 s 8 it and inserting it in proper
Y position. In this case, S5 is

inserted in position of 12,

Checking fifth element of
] *] v array with elements before

Step 4 1 3 ‘ 5 12 é it and inserting it in proper
. position. In this case, B is
inserted in position of 12.
0 1 ‘ 3 8 12 Sorted Array in Ascending Order
ALGORITHM:

Step 1: start

Step 2: fori « 1 to length(A)
Step3: j«i

Step 4: whilej>0 and A[j-1] > A[j]
Step 5: swap Alj] and A[j-1]
Step 6: je—ij-1

Step 7: end while

Step 8: end for

Step9: stop

program to implement insertion sort

#include<iostream>
using namespace std;
void insertion_sort(int a[],int n)
{
int i,t,pos;
for(i=0;i<n;i++)

{

UNIT -3

t=a[il;
pos=i;
while(pos>0&&al[pos-1]>t)

a[pos]=a[pos-1];

pos--;
}
a[pos]=t;
}
}
int main()
L
int n,i;
int list[30];
cout<<"enter no of elements\n";
cin>>n;
cout<<"enter "<<n<<" numbers ";
for(i=0;i<n;i++)
cin>>list[i];
insertion_sort(list,n);
cout<<" after sorting\n";
for(i=0;i<n;i++)
cout<<list[i]<<endl,
return O;
}
RUN 1:

enter no of elements 5
enter 5 numbers 55 44 33 22 11

after sorting 11 22 33 44 55

[| QlyJickysort]

Quick sort: It is a divide and conquer algorithm. Developed by Tony Hoare in 1959. Quick sort
first divides a large array into two smaller sub-arrays: the low elements and the high elements.
Quick sort can then recursively sort the sub-arrays.

ALGORITHM:

Step 1: Pick an element, called a pivot, from the array.

Step 2: Partitioning: reorder the array so that all elements with values less than the pivot come
before the pivot, while all elements with values greater than the pivot come after it (equal
values can go either way). After this partitioning, the pivot is in its final position. This is
called the partition operation.

Step 3: Recursively apply the above steps to the sub-array of elements with smaller values and

separately to the sub-array of elements with greater values.

78

UNIT -3

A[9]

Pivot Value <€—

511 95| 66|72 |42

3 4

6 7 8

subarray for < pivot value

A.L[5]

subarray for > pivot value

ARI[3]

UNSORTED

95 > pivot value
15 < pivot value
50 swap

66 > pivot value
41 < pivot value
50 swap

72 > pivot value
39 < pivot value
50 swap

42 < pivot value
38 < pivot value
stop

38 < pivot value
72 > pivot value, ¢

r»ﬁmi split point

swap 38 and 51

79

UNIT -3

|
s e

subarray for > pivot value

L=}

0 1 2
A L[S

subarray for < pivot value

Quick sort recursively AL[S5] AR[3] Quick sort recursively
Value | 38| 15| 41| 39 | 42 | unsorTED Pivot_,_)
Value
6 7 8

2 r r 95> pivot value
38 < pivot value F : : 66< pivot value
42 > pivot value swap 66 and 72
go for next 6 7 8
15 < pivot value SORTED
39 < pivot value
swap 39 and 41 AR[3]

subarray y

ALL[3] Quick sort recursively
1 2
Pivot Value — | 38 E UNSORTED
0 1 2
39> pivot value
3 15< pivot value
swap 15 and 38
0 1 2

ALLL[3]

< FINAL SORTING
Split point of A[9]
Split point of A.L[5]
ALLL[3] ALR[1] AR[3]

15| 38| 39| 41 |42 |51 |66 |72 |95

80

UNIT -3

program to implement Quick sort

#include<iostream.h>
int partition(int x[],int low,int high)

{

int down,up,pivot,t;
if(low<high)
{

down=low;

up=high;

pivot=down;

while(down<up)

{
while((x[down]<=x[pivot]) &&(down<high))down++;
while(x[up]>x[pivot])up--;
if(down<up)

{
t=x[down];
X[down]=x[up];
x[up]=t;
H*endif*/
¥
t=x[pivot];
X[pivot]=x[up];
x[up]=t;
}
return up;
}
void quicksort(int x[],int low,int high)
{
int p;
if(low<high)
{
p=partition(x,low,high);
quicksort(x,low,p-1);
quicksort(x,p+1,high);
}
}
int main()
L
int n,i;
int list[30];

cout<<"enter no of elements\n";

UNIT -3

cin>>n;
cout<<"enter "<<n<<" numbers ";
for(i=0;i<n;i++)
cin>>list[i];
quicksort(list,0,n-1);
cout<<" after sorting\n*;
for(i=0;i<n;i++)
cout<<list[i]<<endl;

return O;

¥

enter no of elements

5

enter 5 numbers54321
after sorting12345

{ Merge sort J

Merge sort is a sorting technique based on divide and conquer technique. In merge sort the
unsorted list is divided into N sublists, each having one element, because a list of one element is
considered sorted. Then, it repeatedly merge these sublists, to produce new sorted sublists, and at
lasts one sorted list is produced. Merge Sort is quite fast, and has a time complexity of O(n log n).

Conceptually, merge sort works as follows:

Divide the unsorted list into two sub lists of about half the size.

Divide each of the two sub lists recursively until we have list sizes of length 1, in which case the
list itself is returned.

Merge the two sub lists back into one sorted list.

[] o & |-]
6 - B
6|] partition Comergt —— - [2
.- . e L '..,l - e b -
2 — 2] — 5
partitian merge |-
Y P 0 |. — . 6
5 s partition meres R 0
[l s e 1)

#include<iostream>

using namespace std;

void merge(int a[],int low,int mid,int high)
{

int temp[100];

UNIT -3

int i,j,k;
i=low;
j=mid+1;
k=low;
while((i<=mid)&&(j<=high))
{

if(a[i]<=ali])
{

temp[k]=a[il;
++i;

temp[K]=alj];
++j;
}

++k;

}
if(i>mid)

while(j<=high)

temp[K]=alj];
++j;
++k;

else

while(i<=mid)
{
temp[K]=a[i];
++i;
++k;
}
}
for(int i=low;i<=high;i++)
a[i]=templ[i];
}

void mergesort(int a[],int low,int high)
{

int mid;

if(low<high)

mid=(low+high)/2;
mergesort(a,low,mid);
mergesort(a,mid+1,high);
merge(a,low,mid,high);

¥

83

UNIT -3

int main()

{

int n,i;

int list[30];
cout<<"enter no of elements\n";
cin>>n;
cout<<"enter "<<n<<" numbers ";
for(i=0;i<n;i++)
cin>>list[i];
mergesort (list,0,n-1);
cout<<" after sorting\n";
for(i=0;i<n;i++)
cout<<list[i]<<"\t”;

return 0;

}
RUN 1:
enter no of elements 5

enter 5 numbers 44 335511 -1
after sorting -1 11 33 44 55

T hempsot |

It is a completely binary tree with the property that a parent is always greater than or equal
to either of its children (if they exist). first the heap (max or min) is created using binary tree and
then heap is sorted using priority queue.

Steps Followed:

a) Start with just one element. One element will always satisfy heap property.
b) Insert next elements and make this heap.
c) Repeat step b, until all elements are included in the heap.
Steps of Sorting:
a) Exchange the root and last element in the heap.
b) Make this heap again, but this time do not include the last node.
) Repeat steps a and b until there is no element left.

C++ program for implementation of Heap Sort

#include <iostream>

using namespace std;

/I To heapify a subtree rooted with node i which is
/I an index in arr[]. n is size of heap

void heapify(int arr[], int n, int i)

int largest = i; // Initialize largest as root

intL=2*+1;//left=2%+ 1
int R= 2%+ 2; /[right = 2*i + 2

84

UNIT -3

[I'1f left child is larger than root
if (L <n && arr[L] > arr[largest])
largest =L;
/[1 right child is larger than largest so far
if (R <n && arr[R] > arr[largest])
largest = R;
/' largest is not root
if (largest != i)

swap(arr[i], arr[largest]);
/I Recursively heapify the affected sub-tree
heapify(arr, n, largest);

}

¥

void heapSort(int arr[], int n)
{inti;
/I Build heap (rearrange array)
for(i=n/2-1;,i>=0;i-)
heapify(arr, n, i);

/I One by one extract an element from heap
for (i=n-1; i>=0; i--)
{

/I Move current root to end

swap(arr[0], arr[i]);

/I call max heapify on the reduced heap
heapify(arr, i, 0);
}
}

/* A utility function to print array of size n */
void printArray(int arr[], int n)

for (int i=0; i<n; ++i)
cout << arrfi] <<"";
cout << "\n";
}
int main()
{
int n,i;
int list[30];
cout<<"enter no of elements\n";
cin>>n;
cout<<"enter "<<n<<" numbers ";
for(i=0;i<n;i++)
cin>>list[i];
heapSort(list, n);
cout << "Sorted array is \n";
printArray(list, n);

85

UNIT -3

return O;

¥
RUN 1:

enter no of elements 5

enter 5 numbers 11 99 22 101 1

Sorted array is
1112299 101

Time complexities:

Algorithm Worst case Average case Best case
Bubble sort o(n) o(n?) o(n?)
selection sort o(n?) o(n) o(n?)
Insertion sort o(n?) o(n?) o(n?)
Quick sort O(n log n) O(n log n) 0o(n?

Merge sort O(nlog n) O(nlog n) O(nlog n)
Heap sort O(nlog n) O(nlog n) O(n log n)
Linear search O(n) Oo(n) 0O(1)
Binary search O(log n) O(log n) o)

86

UNIT -3

Terminology of Graph

Graphs:-

A graph G is a discrete structure consisting of nodes (called vertices) and lines joining the nodes
(called edges). Two vertices are adjacent to each other if they are joint by an edge. The edge
joining the two vertices is said to be an edge incident with them. We use V (G) and E(G) to
denote the set of vertices and edges of G respectively.

Example

u and v are adjacent vertices; e 15 an edge incident with # and v. e can also be denoted by v or vu.

Loops and Multiple Edges

An edge joning only one vertex 1s called a Joop. If there are more than one edge joining « and v of G,

then all edges joming « and v form a multiple edge of G.

A multiple edge

v

Aloop —»

87

UNIT -3

Simple Graph

A simple graph is a graph containing no loops and multiple edges.

Degrees of Vertices
The degree of a vertex is the number of edges incident with it, except that a loop at a vertex

contributes twice to the degree of that vertex. The degree of the vertex v 1s denoted by deg{v) or

d(v).

Example

d(n)zS, d(v)z?a and d(w)=2

Complete Graphs

The complete graph on n vertices, denoted by K, is the simple graph in which any pair of vertices

are adjacent.

Examples

) K

: @) I K, e—O

) K, i i V) K, X

88

UNIT -3

Subgraphs
A subgraph of a graph G is a graph I7 where V(I)cV(G) and E(IT)c E(G).

Example

is a subgraph of

Connected Graphs
A graph is connected 1f there is a path between every pair of distinct vertices of the graph. An edge
uv 1n a connected graph G 1s called a bridge it G —uv. the graph obtained by deleting uv from G, 1s

not connected.

Example
A Bridge

I'd

A connected graph

Euler Circuit and Euler Path
An Euler circuit in a graph G is a simple circuit containing every edge of G. An Euler path inG isa
simple path containing every edge of G.

Graph Representations

Graph data structure is represented using following representations...

1. Adjacency Matrix

2. Incidence Matrix

3. Adjacency List
Adjacency Matrix
In this representation, graph can be represented using a matrix of size total number of vertices by total
number of vertices. That means if a graph with 4 vertices can be represented using a matrix of 4X4 class.
In this matrix, rows and columns both represents vertices. This matrix is filled with either 1 or 0. Here, 1
represents there is an edge from row vertex to column vertex and O represents there is no edge from row

UNIT -3

vertex to column vertex.

For example, consider the following undirected graph representation...

A B C D E
4 3
Q e Al 0O 1 1 1 O
G } B|1 0 0 1 1
c|l1 0 0 1 O
(2 (D) D[1 1 1 1 1
— E| O 1 0 1 O
\. J
Directed graph representation...
A B C D E
0 1.1 0 0
0 0 0 1 1
0 0 0 1 0
1 0 0 1 1
0 0 0 0O

Incidence Matrix

In this representation, graph can be represented using a matrix of size total number of vertices
by total number of edges. That means if a graph with 4 vertices and 6 edges can be
represented using a matrix of 4X6 class. In this matrix, rows represents vertices and columns
represents edges. This matrix is filled with either 0 or 1 or -1. Here, O represents row edge is
not connected to column vertex, 1 represents row edge is connected as outgoing edge to
column vertex and -1 represents row edge is connected as incoming edge to column vertex.

For example, consider the following directed graph representation...
El E2 E3 E4 E5 E6 E7 E8

s A
1 1 -1 0 0 0 0 O
-1 0 0 1 0 1 0 O
0 -1 0 01 0 0O
0O 0 1 -1 -1 0 11
o 0 0 0 0 -1 -10

\ g

Adjacency List

In this representation, every vertex of graph contains list of its adjacent vertices.

UNIT -3

For example, consider the following directed graph representation implemented using linked
list...

A > B »{ C
B[I >l }>E
> |C >[D
Dl J—>Al 3B F—EX
E

This representation can also be implemented using array as follows..
Ref A
ererence rray\\/

0 [3—I[BIC]
——>[DIE]

—>{D]
—»ITIF[?I<

W N =

N]} N

Adjacency Array

Graph traversals

Graph traversal means visiting every vertex and edge exactly once in a well-defined order. While using
certain graph algorithms, you must ensure that each vertex of the graph is visited exactly once. The order
in which the vertices are visited are important and may depend upon the algorithm or question that you
are solving.

During a traversal, it is important that you track which vertices have been visited. The most common way
of tracking vertices is to mark them.

Depth First Search (DFS)

The DFS algorithm is a recursive algorithm that uses the idea of backtracking. It involves exhaustive
searches of all the nodes by going ahead, if possible, else by backtracking.

Here, the word backtrack means that when you are moving forward and there are no more nodes along
the current path, you move backwards on the same path to find nodes to traverse. All the nodes will be
visited on the current path till all the unvisited nodes have been traversed after which the next path will be
selected.

91

UNIT -3

This recursive nature of DFS can be implemented using stacks. The basic idea is as follows:

Pick a starting node and push all its adjacent nodes into a stack.

Pop a node from stack to select the next node to visit and push all its adjacent nodes into a stack.

Repeat this process until the stack is empty. However, ensure that the nodes that are visited are marked.
This will prevent you from visiting the same node more than once. If you do not mark the nodes that are
visited and you visit the same node more than once, you may end up in an infinite loop.

DFS-iterative (G, s): //Where G is graph and s is source vertex
let S be stack
S.push('s) /lnserting s in stack
mark s as visited.
while ('S is not empty):
/[Pop a vertex from stack to visit next
v = S.top()
S.pop()
/[Push all the neighbours of v in stack that are not visited
for all neighbours w of v in Graph G:
if w is not visited :
S.push(w)
mark w as visited

DFS-recursive(G, s):
mark s as visited
for all neighbours w of s in Graph G:
if w is not visited:
DFS-recursive(G, w)

DFS
(1] [1] (1]

92

UNIT -3

Breadth First Search (BFS);

There are many ways to traverse graphs. BFS is the most commonly used approach.BFS is a traversing
algorithm where you should start traversing from a selected node (source or starting node) and traverse
the graph layerwise thus exploring the neighbour nodes (nodes which are directly connected to source
node). You must then move towards the next-level neighbour nodes.As the name BFS suggests, you are
required to traverse the graph breadthwise as follows:

1.First move horizontally and visit all the nodes of the current layer

2.Move to the next layer

93

Dictionaries:- linear list representation, skip list representation, operations insertion, deletion and
searching, hash table representation, hash functions, collision resolution-separate chaining, open addressing-
linear probing, quadratic probing, double hashing, rehashing, extendible hashing.

DICTIONARIES:

Dictionary is a collection of pairs of key and value where every value is associated with the
corresponding key.

Basic operations that can be performed on dictionary are:

1. Insertion of value in the dictionary

2. Deletion of particular value from dictionary

3. Searching of a specific value with the help of key

Linear List Representation

The dictionary can be represented as a linear list. The linear list is a collection of pair and value.
There are two method of representing linear list.

1. Sorted Array- An array data structure is used to implement the dictionary.

2. Sorted Chain- A linked list data structure is used to implement the dictionary

Structure of linear list for dictionary:

class dictionary

{

private:
int k,data;
struct node

public: int key;
int value;

struct node *next;
} *head,;

public:
dictionary();
void insert_d();
void delete_d();
void display_d();
void length();

j3

Insertion of new node in the dictionary:

Consider that initially dictionary is empty then

head = NULL

We will create a new node with some key and value contained in it.

New

1 10 | NULL

UNIT -4

Now as head is NULL, this new node becomes head. Hence the dictionary contains only one
record. this node will be ‘curr’ and ‘prev’ as well. The ‘cuur’ node will always point to current
visiting node and ‘prev’ will always point to the node previous to ‘curr’ node. As now there is
only one node in the list mark as ‘curr’ node as ‘prev’ node.

New/head/curr/prev

1 10 NULL

Insert a record, key=4 and value=20,

New

4 20 NULL

Compare the key value of ‘curr’ and ‘New’ node. If New->key > Curr->key then attach New node
to ‘curr’ node.

prev/head New curr->next=New
prev=curr
1 10 > 4 20 NULL
Add a new node <7,80> then
head/prev curr New
1 10 ™ 4 20 > 7 80 |NULL

If we insert <3,15> then we have to search for it proper position by comparing key value.

(curr->key < New->key) is false. Hence else part will get executed.

Y
~

1 10 4 20 80 |NULL

-

void dictionary::insert_d()

{

node *p,*curr,*prev;
cout<<"Enter an key and value to be inserted:";
cin>>k;
cin>>data;

95

UNIT -4

p=new node;
p->key=k;
p->value=data;
p->next=NULL;
if(head==NULL)

head=p;
else
{
curr=head;
while((curr->key<p->key)&&(curr->next!=NULL))
{
prev=curr;
curr=curr->next;
}
if(curr->next==NULL)
{
if(curr->key<p->key)
{
curr->next=p;
prev=curr;
}
else
{
p- >next=prev->next;
prev->next=p;
}
}
else
{
p->next=prev->next;
prev->next=p;
}

cout<<"\nInserted into dictionary Sucesfully....\n";

The delete operation:

cur

Case 1: Initially assign ‘head’ node as ‘curr’ node.Then ask for a key value of the node which is
to be deleted. Then starting from head node key value of each jode is cked and compared with the
desired node’s key value. We will get node which is to be deleted in variable ‘curr’. The node
given by variable ‘prev’ keeps track of previous node of ‘cuu’ node. For eg, delete node with key
value 4 then

10 3 15 4 0

80

NULL

LA 4

96

UNIT -4

Case 2:

If the node to be deleted is head node
i.e.. if(curr==head)

Then, simply make ‘head’ node as next node and delete ‘curr’

curr head
1 o > 3 15 > 4 20 > 7 80 NULL
Hence the list becomes
head
3 15 > 4 20 > 7 80 NULL

void dictionary::delete_d()
{
node*curr,*prev;
cout<<"Enter key value that you want to delete...";
cin>>k;
if(head==NULL)
cout<<"\ndictionary is Underflow";
else
{ curr=head;
while(curr!=NULL)
{
if(curr->key==Kk)
break;
prev=curr;
curr=curr->next;
¥
}
if(curr==NULL)
cout<<"Node not found...":
else

{

if(curr==head)

UNIT -4

head=curr->next;
else
prev->next=curr->next;
delete curr;
cout<<"ltem deleted from dictionary...";

¥

The length operation:
int dictionary::length()

{
struct node *curr;
int count;
count=0;
curr=head;
if(curr==NULL)
{
cout<<"The list is empty”;
return O;
}
while(curr!=NULL)
{
count++;
cur=curr->next;
}
return count;
}

SKIP LIST REPRESENTATION

Skip list is a variant list for the linked list. Skip lists are made up of a
series of nodes connected one after the other. Each node contains a key and value pair as well as
one or more references, or pointers, to nodes further along in the list. The number of references
each node contains is determined randomly. This gives skip lists their probabilistic nature, and the
number of references a node contains is called its node level.
There are two special nodes in the skip list one is head node which is the starting node of the list
and tail node is the last node of the list

A 4
A 4
\ 4

1 2 3 4 5 6 7
head tail
node node

The skip list is an efficient implementation of dictionary using sorted chain. This is because in
skip list each node consists of forward references of more than one node at a time.

98

UNIT -4

Eg:

IS e I o S S I e S S L T

Now to search any node from above given sorted chain we have to search the sorted chain from
head node by visiting each node. But this searching time can be reduced if we add one level in
every alternate node. This extra level contains the forward pointer of some node. That means in
sorted chain come nodes can holds pointers to more than one node.

\ 4
\ 4

| NULL

\ 4

\ 4
\ 4
\ 4
A

If we want to search node 40 from above chain there we will require comparatively less time. This
search again can be made efficient if we add few more pointers forward references.

| NULL

A 4
A 4
A 4
A 4
A

skip list

Node structure of skip list:

template <class K, class E>
struct skipnode
{
typedef pair<const K,E> pair_type;
pair_type element;
skipnode<K,E> **next;
skipnode(const pair_type &New_pair, int MAX):element(New_pair)

{
¥

next=new skipnode<K,E>*[MAX];

99

UNIT -4

The individual node looks like this:

Key value array of pointer
_ /
Y
Element *next

Searching:
The desired node is searched with the help of a key value.

template<class K, class E>

skipnode<K,E>* skipLst<K,E>::search(K& Key val)
{

skipnode<K,E>* Forward_Node = header;

for(int i=level;i>=0;i--)

while (Forward_Node->next[i]->element.key < key val)
Forward _Node = Forward_Node->next[i];
last[i] = Forward_Node;

¥

return Forward_Node->next[0];

¥

Searching for a key within a skip list begins with starting at header at the overall list level and
moving forward in the list comparing node keys to the key val. If the node key is less than the
key val, the search continues moving forward at the same level. If o the other hand, the node key
is equal to or greater than the key val, the search drops one level and continues forward. This
process continues until the desired key val has been found if it is present in the skip list. If it is
not, the search will either continue at the end of the list or until the first key with a value greater
than the search key is found.

Insertion:
There are two tasks that should be done before insertion operation:

1. Before insertion of any node the place for this new node in the skip list is searched. Hence
before any insertion to take place the search routine executes. The last[] array in the search
routine is used to keep track of the references to the nodes where the search, drops down
one level.

2. The level for the new node is retrieved by the routine randomelevel()

template<class K,class E>
void skipLst<K,E>::insert(pair<K,E>& New_pair)

{
if(New_pair.key >= tailkey)

{

cout<<’Key is too large”;

}

skipNode<K,E>* temp = search(New_pair.key);
if(temp->element.key == New_pair.key)

100

UNIT -4

{

temp->element.value=New_pair.value;
return;

¥

if*New_Level > levels)

{

New_Level = ++levels;
last[New_Level] = header;

}
skipNode<K,E> *newNode = new skipNode<K,E>(New_pair, New_Level+1);

for(int i=0;i<=New_Level;i++)

{
newNode->next[i] = last[i]->next[i];
last[i]->next[i] = newNode;

len++;
return;

¥

Determining the level of each node:

template <class K, class E>

int skipLst<K,E>::randomlevel()
{

int IvI=0;

while(rand() <= Lvl_No)
Ivi=Ilvi+1;

if(lvl<=MaxLvl)

return Ivl;

else

return MaxLuvl;

}

Deletion:
First of all, the deletion makes use of search algorithm and searches the node that is to be deleted.
If the key to be deleted is found, the node containing the key is removed.

template<class K, class E>

void skipLst<K,E>::delet(K& Key val)

{

if(key_val>=tailKey)

return;

skipNode<K,E>* temp = search(Key_val);
if(temp->elemnt.key 1= Key val)

return;

for(int i=0;i<=levels;i++)

101

UNIT -4

if(last[i]->next[i] == temp)
last[i]=>next[i] = temp->next[i];

¥

while(level>0 && header->next[level] == tail)
levels--;

delete temp;

len--;

¥

HASH TABLE REPRESENTATION

» Hash table is a data structure used for storing and retrieving data very quickly. Insertion of
data in the hash table is based on the key value. Hence every entry in the hash table is
associated with some key.

» Using the hash key the required piece of data can be searched in the hash table by few or
more key comparisons. The searching time is then dependent upon the size of the hash
table.

» The effective representation of dictionary can be done using hash table. We can place the
dictionary entries in the hash table using hash function.

HASH FUNCTION

» Hash function is a function which is used to put the data in the hash table. Hence one can
use the same hash function to retrieve the data from the hash table. Thus hash function is
used to implement the hash table.

» The integer returned by the hash function is called hash key.

For example: Consider that we want place some employee records in the hash table The record of
employee is placed with the help of key: employee ID. The employee ID is a 7 digit humber for
placing the record in the hash table. To place the record 7 digit number is converted into 3 digits
by taking only last three digits of the key.

If the key is 496700 it can be stored at 0™ position. The second key 8421002, the record of those
key is placed at 2™ position in the array.

Hence the hash function will be- H(key) = key%1000

Where key%21000 is a hash function and key obtained by hash function is called hash key.

» Bucket and Home bucket: The hash function H(key) is used to map several dictionary
entries in the hash table. Each position of the hash table is called bucket.

The function H(key) is home bucket for the dictionary with pair whose value is key.

TYPES OF HASH FUNCTION
There are various types of hash functions that are used to place the record in the hash table-

1. Division Method: The hash function depends upon the remainder of division.
Typically the divisor is table length.
For eg; If the record 54, 72, 89, 37 is placed in the hash table and if the table size is 10 then

102

UNIT -4

h(key) = record % table size 0
1
54%10=4 2 72
72%10=2 3
89%10=9 4 54
37%10=7 5
6
7 37
8
9 89
2. Mid Square:

In the mid square method, the key is squared and the middle or mid part of the result is used as the
index. If the key is a string, it has to be preprocessed to produce a number.
Consider that if we want to place a record 3111 then

3111% = 9678321
for the hash table of size 1000
H(3111) = 783 (the middle 3 digits)

3. Multiplicative hash function:
The given record is multiplied by some constant value. The formula for computing the hash key
is-

H(key) = floor(p *(fractional part of key*A)) where p is integer constant and A is constant real
number.

Donald Knuth suggested to use constant A = 0.61803398987
If key 107 and p=50 then

H(key) = floor(50*(107*0.61803398987))
= floor(3306.4818458045)
= 3306
At 3306 location in the hash table the record 107 will be placed.

4. Digit Folding:

The key is divided into separate parts and using some simple operation these parts are
combined to produce the hash key.
For eg; consider a record 12365412 then it is divided into separate parts as 123 654 12 and these
are added together

H(key) = 123+654+12
=789
The record will be placed at location 789

5. Digit Analysis:

The digit analysis is used in a situation when all the identifiers are known in advance. We
first transform the identifiers into numbers using some radix, r. Then examine the digits of each
identifier. Some digits having most skewed distributions are deleted. This deleting of digits is
continued until the number of remaining digits is small enough to give an address in the range of

the hash table. Then these digits are used to calculate the hash address.

103

UNIT -4

COLLISION

the hash function is a function that returns the key value using which the record can be placed in
the hash table. Thus this function helps us in placing the record in the hash table at appropriate
position and due to this we can retrieve the record directly from that location. This function need
to be designed very carefully and it should not return the same hash key address for two different
records. This is an undesirable situation in hashing.

Definition: The situation in which the hash function returns the same hash key (home bucket) for
more than one record is called collision and two same hash keys returned for different records is
called synonym.

Similarly when there is no room for a new pair in the hash table then such a situation is
called overflow. Sometimes when we handle collision it may lead to overflow conditions.
Collision and overflow show the poor hash functions.

For example, 0
1 131
Consider a hash function. 2
3 43
H(key) = recordkey%10 having the hash table size of 10 4 44
5
The record keys to be placed are 6 36
7 57
131, 44, 43, 78, 19, 36, 57 and 77 8 78
131%10=1 9 19
44%10=4
43%10=3
78%10=8
19%10=9
36%10=6
57%10=7
77%10=7

Now if we try to place 77 in the hash table then we get the hash key to be 7 and at index 7 already
the record key 57 is placed. This situation is called collision. From the index 7 if we look for next
vacant position at subsequent indices 8.9 then we find that there is no room to place 77 in the hash
table. This situation is called overflow.

COLLISION RESOLUTION TECHNIQUES

If collision occurs then it should be handled by applying some techniques. Such a
technique is called collision handling technique.

1.Chaining

2.0pen addressing (linear probing)

3.Quadratic probing

4.Double hashing

5. Double hashing

6.Rehashing

104

UNIT -4

CHAINING

In collision handling method chaining is a concept which introduces an additional field with data
i.e. chain. A separate chain table is maintained for colliding data. When collision occurs then a

linked list(chain) is maintained at the home bucket.

For eg;

Consider the keys to be placed in their home buckets are

131, 3,4,21,61,7,97,8,9

then we will apply a hash function as H(key) = key % D

Where D is the size of table. The hash table will be-

Here D = 10

1 ——{131 | 1 21|

1)

3 NULL

\ 4

61

NULL

A\ 4

131 | 61

NULL

T e

NULL

A chain is maintained for colliding elements. for instance 131 has a home bucket (key) 1.
similarly key 21 and 61 demand for home bucket 1. Hence a chain is maintained at index 1.

OPEN ADDRESSING - LINEAR PROBING

This is the easiest method of handling collision. When collision occurs i.e. when two records
demand for the same home bucket in the hash table then collision can be solved by placing the
second record linearly down whenever the empty bucket is found. When use linear probing (open
addressing), the hash table is represented as a one-dimensional array with indices that range from
0 to the desired table size-1. Before inserting any elements into this table, we must initialize the
table to represent the situation where all slots are empty. This allows us to detect overflows and
collisions when we inset elements into the table. Then using some suitable hash function

element can be inserted into the hash table.

For example:

Consider that following keys are to be inserted in the hash table

131,4,8,7,21,5,31,61,9, 29

105

UNIT -4

Initially, we will put the following keys in the hash table.
We will use Division hash function. That means the keys are placed using the formula

H(key) = key % tablesize
H(key) = key % 10

For instance the element 131 can be placed at

H(key) = 131 % 10
=1

Index 1 will be the home bucket for 131. Continuing in this fashion we will place 4, 8, 7.
Now the next key to be inserted is 21. According to the hash function

H(key)=21%10
H(key) =1

But the index 1 location is already occupied by 131 i.e. collision occurs. To resolve this collision
we will linearly move down and at the next empty location we will prob the element. Therefore
21 will be placed at the index 2. If the next element is 5 then we get the home bucket for 5 as
index 5 and this bucket is empty so we will put the element 5 at index 5.

Index Key Key Key
0 NULL NULL NULL
1 131 131 131
) NULL 21 21
3 NULL NULL 31

4 4 4
4
NULL 5 5
5
6 NULL NULL 61
7 7 7
;
8 8 8
8
9 NULL NULL NULL

after placing keys 31, 61

106

UNIT -4

The next record key is 9. According to decision hash function it demands for the home bucket 9.
Hence we will place 9 at index 9. Now the next final record key 29 and it hashes a key 9. But
home bucket 9 is already occupied. And there is no next empty bucket as the table size is limited
to index 9. The overflow occurs. To handle it we move back to bucket 0 and is the location over
there is empty 29 will be placed at 0" index.

Problem with linear probing:

One major problem with linear probing is primary clustering. Primary clustering is a process in
which a block of data is formed in the hash table when collision is resolved.

Key
19%10 =9 cluster is formed i
18%10=8 29
39%10=9 8
29%10=9
8%10=38
rest of the table is empty

this cluster problem can be solved by quadratic probing.

18
QUADRATIC PROBING: 19

Quadratic probing operates by taking the original hash value and adding successive values of an
arbitrary quadratic polynomial to the starting value. This method uses following formula.

H(key) = (Hash(key) + i?) % m)

where m can be table size or any prime number.

for eg; If we have to insert following elements in the hash table with table size 10:

37,90, 55, 22, 17, 49, 87 0190
111
37%10=7 2|22
90%10=0 3
55%10=5 4
22%10=2 555
11%10=1 6
737
Now if we want to place 17 a collision will occur as 17%10 = 7 and 8
bucket 7 has already an element 37. Hence we will apply 9

guadratic probing to insert this record in the hash table.
Hi (key) = (Hash(key) + i*) % m

Consider i = 0 then
(17+0)%10=7

107

UNIT -4

(17 + 1% % 10 = 8, when i =1

The bucket 8 is empty hence we will place the element at index 8.

Then comes 49 which will be placed at index 9.

49%10=9

Now to place 87 we will use quadratic probing.

(87 +0)% 10 =7
(87 +1)% 10 = 8... but already occupied
(87 + 2%) % 10 = 1.. already occupied

(87 +3%) % 10 = 6

It is observed that if we want place all the necessary elements in
the hash table the size of divisor (m) should be twice as large as
total number of elements.

DOUBLE HASHING

Double hashing is technique in which a second hash function is applied to the key when a
collision occurs. By applying the second hash function we will get the number of positions from

the point of collision to insert.

There are two important rules to be followed for the second function:

e it must never evaluate to zero.

e must make sure that all cells can be probed.
The formula to be used for double hashing is

Hi(key) = key mod tablesize
Ha(key) = M — (key mod M)

where M is a prime number smaller than the size of the table.

Consider the following elements to be placed in the hash table of size 10

37,90, 45, 22, 17, 49, 55
Initially insert the elements using the formula for Hi(key).
Insert 37, 90, 45, 22

Hy(37)=37%10=7
Hy(90) =90 % 10= 0
Hy(45) =45 % 10= 5
Hi(22) =22 % 10 = 2
Hy(49) =49 % 10= 9

O oo ~NOoO ULk~ WwWwDNREO

© oo NOoO ok WwN P O

90

11

22

55

37

49

90

11

22

55

87

37

49

Key

90

22

45

37

49

108

UNIT -4

Now if 17 to be inserted then

Key
Hi(17) =17% 10=7 9%
Ha(key) = M — (key % M)

17

Here M is prime number smaller than the size of the table. Prime number 22
smaller than table size 10 is 7

Hence M = 7

45

Ha(17) = 7-(17 % 7)
=7-3=4

37
That means we have to insert the element 17 at 4 places from 37. In short we ha \

jumps. Therefore the 17 will be placed at index 1.

49

Now to insert number 55

Hy(55) = 55 % 10 =5 —» Collision hd

90

Ha(55) = 7-(55 % 7) -
=7-6=1

22

That means we have to take one jump from index 5 to place 55.
Finally the hash table will be -

45

55

37

Comparison of Quadratic Probing & Double Hashing N

The double hashing requires another hash function whose probing efficiency is same as
some another hash function required when handling random collision.

The double hashing is more complex to implement than quadratic probing. The quadratic
probing is fast technique than double hashing.

REHASHING

Rehashing is a technique in which the table is resized, i.e., the size of table is doubled by creating
a new table. It is preferable is the total size of table is a prime number. There are situations in
which the rehashing is required.

e When table is completely full
¢ With quadratic probing when the table is filled half.
e When insertions fail due to overflow.

109

UNIT -4

In such situations, we have to transfer entries from old table to the new table by re computing
their positions using hash functions.

Consider we have to insert the elements 37, 90, 55, 22, 17, 49, and 87. the table size is 10 and will
use hash function.,

H(key) = key mod tablesize

37%10=7

90 % 10=0

55%10=15

22% 10= 2

17 % 10 = 7 Collision solved by linear probing
49%10=9

Now this table is almost full and if we try to insert more elements collisions will occur and
eventually further insertions will fail. Hence we will rehash by doubling the table size. The old
table size is 10 then we should double this size for new table, that becomes 20. But 20 is not a
prime number, we will prefer to make the table size as 23. And new hash function will be

H(key) key mod 23 0 |90

1 (11
37%23=14 2 |22
90 %23 =21 3
55%23=9 4
22 %23 =22 5 |55
17 % 23 = 17 6 |87
499%23=3 7 137
87 % 23 =18 8 [49

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Now the hash table is sufficiently large to accommodate new insertions.

Advantages:

110

UNIT -4

1. This technique provides the programmer a flexibility to enlarge the table size if required.
2. Only the space gets doubled with simple hash function which avoids occurrence of

collisions.

EXTENSIBLE HASHING

» Extensible hashing is a technique which handles a large amount of data. The data to be
placed in the hash table is by extracting certain number of bits.

» Extensible hashing grow and shrink similar to B-trees.

> In extensible hashing referring the size of directory the elements are to be placed in
buckets. The levels are indicated in parenthesis.

For eg: Directory
0 1
Levels
0) v
823 11 data to be
placed in bucket

» The bucket can hold the data of its global depth. If data in bucket is more than global
depth then, split the bucket and double the directory.

Consider we have to insert 1, 4, 5, 7, 8, 10. Assume each page can hold 2 data entries (2 is the
depth).

Step 1: Insert 1, 4

1=001
0
4 =100
0)
001 We will examine last bit
010 of data and insert the data
in bucket.

Insert 5. The bucket is full. Hence double the directory.

111

UNIT -4

(©)

100

Step 2: Insert 7
7=111

But as depth is full we can not insert 7 here. Then double the directory and split the bucket.

)

001
010

After insertion of 7. Now consider last two bits.

1=001

4 =100

5=101

Based on last bit the data
is inserted.

00

l (1)

100

Step 3: Insert 8 i.e. 1000

00

)

100
1000

01 10 11
l 2 l)
001 111
010
01 10 11
1@ |
001 111
010

112

UNIT -4

Thus the data is inserted using extensible hashing.
Deletion Operation:

If we wan tot delete 10 then, simply make the bucket of 10 empty.

00 01 10 11
() (2 (2)
100 001 111
1000 101
Delete 7.
00 01 10 11
(1) (M
100 001 ® Note that the level was increased
1000 101 when we insert 7. Now on deletion
of 7, the level should get decremented.

Delete 8. Remove entry from directory 00.

Applications of hashing:

00 00 10 11
L L
100 001
101

UNIT -4

O ~No T~ wWNE

In compilers to keep track of declared variables.

For online spelling checking the hashing functions are used.

Hashing helps in Game playing programs to store the moves made.

For browser program while caching the web pages, hashing is used.
Construct a message authentication code (MAC)

Digital signature.

Time stamping

Key updating: key is hashed at specific intervals resulting in new key

114

Binary Search Trees: Various Binary tree representation, definition, BST ADT, Implementation,
Operations- Searching, Insertion and Deletion, Binary tree traversals, threaded binary trees,
AVL Trees : Definition, Height of an AVL Tree, Operations — Insertion, Deletion and Searching
B-Trees: B-Tree of order m, height of a B-Tree, insertion, deletion and searching, B+ Tree.

TREES

A Tree is a data structure in which each element is attached to one or more elements directly beneath it.

: Level O

O (e () 1

w N

Terminology

1.
noce

The connections between elements are called branches.

A tree has a single root, called root node, which is shown at the top of the tree. i.e. root is always
at the highest level 0.

Each node has exactly one node above it, called parent. Eg: A is the parent of B,C and D.

The nodes just below a node are called its children. ie. child nodes are one level lower than the
parent node.
A node which does not have any child called leaf or terminal node. Eg: E, F, K, L, H, I and M are

B¥es with at least one child are called non terminal or internal nodes.
The child nodes of same parent are said to be siblings.

A path in a tree is a list of distinct nodes in which successive nodes are connected by branches in
the tree.

The length of a particular path is the number of branches in that path. The degree of a node
of a tree is the number of children of that node.

The maximum number of children a node can have is often referred to as the order of a
tree. The height or depth of a tree is the length of the longest path from root to any leaf.

Root: This is the unique node in the tree to which further sub trees are attached. Eg: A

ree of the node: The total number of sub-trees attached to the node is called the degree of the
.Eg: For node A degree is 3. For node K degree is 0

3.Leaves: These are the terminal nodes of the tree. The nodes with degree 0 are always the leaf nodes.
Eg:E,F, K, L,H, I, J

115

4.Internal nodes: The nodes other than the root node and the leaves are called the internal nodes. Eg:
B,CD,G

5.Parent nodes: The node which is having further sub-trees(branches) is called the parent node of
those sub-trees. Eg: B is the parent node of E and F.

6.Predecessor: While displaying the tree, if some particular node occurs previous to some other node
then that node is called the predecessor of the other node. Eg: E is the predecessor of the node B.
7.Successor: The node which occurs next to some other node is a successor node. Eg: B is the
successor of E and F.

8.Level of the tree: The root node is always considered at level 0, then its adjacent children are
supposed to be at level 1 and so on. Eg: A is at level 0, B,C,D are at level 1, E,F,G,H,l,J are at level 2,
K,L are at level 3.

9.Height of the tree: The maximum level is the height of the tree. Here height of the tree is 3. The
height if the tree is also called depth of the tree.

10. Degree of tree: The maximum degree of the node is called the degree of the tree.

BINARY TREES

Binary tree is a tree in which each node has at most two children, a left child and a right child. Thus the
order of binary tree is 2.

A binary tree is either empty or consists
of a) a node called the root
b) left and right sub trees are themselves binary trees.

A binary tree is a finite set of nodes which is either empty or consists of a root and two disjoint
trees called left sub-tree and right sub-tree.

In binary tree each node will have one data field and two pointer fields for representing the
sub-branches. The degree of each node in the binary tree will be at the most two.

Types Of Binary Trees:

There are 3 types of binary trees:

1. Left skewed binary tree: If the right sub-tree is missing in every node of a tree we call it as left

skewed tree.

116

2. Right skewed binary tree: If the left sub-tree is missing in every node of a tree we call it is right

sub-tree.
3. Complete binary tree: :

The tree in which degree of each node is at the most two is called a complete binary tree. In
a complete binary tree there is exactly one node at level 0, two nodes at level 1 and four nodes at level
2 and so on. So we can say that a complete binary tree depth d will contain exactly 2 nodesat each
level I, where | is from 0 to d.

6'\@6 e

A binary tree of depth n will have maximum 2"-1 nodes.

A complete binary tree of level | will have maximum 21 nodes at each level, where | starts from 0.
Any binary tree with n nodes will have at the most n+1 null branches.

The total number of edges in a complete binary tree with n terminal nodes are 2(n-1).

Note:

El e

Binaryv Tree Representation

A binary tree can be represented mainly in 2 ways:

a) Sequential Representation
b) Linked Representation

a) Sequential Representation

The simplest way to represent binary trees in memory is the sequential representation that uses one-
dimensional array.
1) The root of binary tree is stored in the 1 st location of array

2) If a node is in the j th location of array, then its left child is in the location 2J+1 and its right
child in the location 2J+2 i1
The maximum size that is required for an array to store a tree is 2 ¥ -1, where d is the depth of the tree.

117

@@”@

® O

Advantages of sequential representation:

The only advantage with this type of representation is that the
direct access to any node can be possible and finding the parent or left children of any particular node

is fast because of the random access.

Disadvantages of sequential representation:

1. The major disadvantage with this type of representation is wastage of memory. For example in
the skewed tree half of the array is unutilized.

2. In this type of representation the maximum depth of the tree has to be fixed. Because we have
decide the array size. If we choose the array size quite larger than the depth of the tree, then it
will be wastage of the memory. And if we coose array size lesser than the depth of the tree then
we will be unable to represent some part of the tree.

3. The insertions and deletion of any node in the tree will be costlier as other nodes has to be

POSITION ARRAY
0 A
1 B
2 C
3 D
+ E
5 E
6 G
7 H
8 I

adjusted at appropriate positions so that the meaning of binary tree can be preserved.

As these drawbacks are there with this sequential type of representation, we will search for more

flexible representation. So instead of array we will make use of linked list to represent the tree.

b) Linked Representation

Linked representation of trees in memory is implemented using pointers. Since each node in a
binary tree can have maximum two children, a node in a linked representation has two pointers for both
left and right child, and one information field. If a node does not have any child, the corresponding

pointer field is made NULL pointer.

In linked list each node will look like this:

Left Child

Data

Right Child

Advantages of linked representation:
1. This representation is superior to our array representation as there is no wastage of
memory. And so there is no need to have prior knowledge of depth of the tree.
Using dynamic memory concept one can create as much memory(nodes) as
required. By chance if some nodes are unutilized one can delete the nodes by

making the address free.

2. Insertions and deletions which are the most common operations can be done without

moving the nodes.

118

Disadvantages of linked representation:

1. This representation does not provide direct access to a node and special algorithms are
required.

2. This representation needs additional space in each node for storing the left and right sub-
trees.

TRAVERSING A BINARY TREE

Traversing a tree means that processing it so that each node is visited exactly once. A binary
tree can be
traversed a number of ways.The most common tree traversals are

> In-order
> Pre-order and
> Post-order

" Pre-order 1.Visit the root Root | Left | Right
2.Traverse the left sub tree in pre-order
3.Traverse the right sub tree in pre-order.

In-order 1.Traverse the left sub tree in in-order Left | Root | Right
2.Visit the root
. 3.Traverse the right sub tree in in-order.
Post-order 1.Traverse the left sub tree in post-order Left | Right | Root
2.Traverse the right sub tree in post-order.
3.Visit the root

The pre-order traversal is: ABDEHCFGIKJ

The in-order traversal is : DBHEAFCKIGJ
The post-order traversal is:DHEBFKIJGCA

119

Inorder Traversal:
Print Srd
— ()
Prlnt2 /lnt4
& . —

é Print this
at the last «—

Print 1

C-B-A-D-E is the inorder traversal i.e. first we go towards the leftmost node. i.e. C so print that node

C. Then go back to the node B and print B. Then root node A then move towards the right sub-tree
print D and finally E. Thus we are following the tracing sequence of Left|Root|Right. This type of
traversal is called inorder traversal. The basic principle is to traverse left sub-tree then root and then the

right sub-tree.

Pseudo Code:

template <class T>
void inorder(bintree<T> *temp)

{
if(temp!=NULL)
inorder(temp->left);
cout<<’temp->data”;
inorder(temp->right);
¥
¥
Preorder Traversal:
Print 1"

Prmt}’/
Print 412

_,é Prmt at the last
2rd

Print 3
is the preorder traversal of the above fig. We are following Root|Left|Right path i.e. data at the
root node will be printed first then we move on the left sub-tree and go on printing the data till
we reach to the left most node. Print the data at that node and then move to the right sub- tree.
Follow the same principle at each sub-tree and go on printing the data accordingly.

template <class T>
void preorder(bintree<T> *temp)

120

if(temp!=NULL)

{
cout<<temp->data”; preorder(temp->left);
preorder(temp->right);

Postorder Traversal:
Print at the last

Print 224 /

5‘ ¢ 2nd
Print 1

From figure the postorder traversal is C-D-B-E-A. In the postorder traversal we are following the
Left|Right|Root principle i.e. move to the leftmost node, if right sub-tree is there or not if not then
print the leftmost node, if right sub-tree is there move towards the right most node. The key idea
here is that at each sub-tree we are following the Left|Right|Root principle and print the data
accordingly.

Pseudo Code:

template <class T>
void postorder(bintree<T> *temp)

{
if(temp!=NULL)
{
postorder(temp->left);
postorder(temp->right);
cout<<’temp->data”;
¥
}

BINARY SEARCH TREE

In the simple binary tree the nodes are arranged in any fashion. Depending on user’s desire
the new nodes can be attached as a left or right child of any desired node. In such a case finding for
any node is a long cut procedure, because in that case we have to search the entire tree. And thus
the searching time complexity will get increased unnecessarily. So to make the searching
algorithm faster in a binary tree we will go for building the binary search tree. The binary search
tree is based on the binary search algorithm. While creating the binary search tree the data is
systematically arranged. That means values at left sub-tree < root node value < right sub-tree
values.

121

\

Operations On Binary Search Tree:

The basic operations which can be performed on binary search tree are.
1. Insertion of a node in binary search tree.
2. Deletion of a node from binary search tree.
3. Searching for a particular node in binary search tree.

Insertion of a node in binary search tree.

While inserting any node in binary search tree, look for its appropriate position in the binary search
tree. We start comparing this new node with each node of the tree. If the value of the node which is
to be inserted is greater than the value of the current node we move on to the right sub-branch
otherwise we move on to the left sub-branch. As soon as the appropriate position is found we
attach this new node as left or right child appropriately.

))

Before Insertion

In the above fig, if we wan to insert 23. Then we will start comparing 23 with value of root node
i.e. 10. As 23 is greater than 10, we will move on right sub-tree. Now we will compare 23 with 20
and move right, compare 23 with 22 and move right. Now compare 23 with 24 but it is less than
24. We will move on left branch of 24. But as there is node as left child of 24, we can attach 23 as
left child of 24.

122

@ g After Insertion
O

Deletion of a node from binary search tree.

For deletion of any node from binary search tree there are three which are possible.
i. Deletion of leaf node.
il. Deletion of a node having one child.
iii. Deletion of a node having two children.

Deletion of leaf node.

This is the simplest deletion, in which we set the left or right pointer of parent node as NULL.

\

Before deletion

From the above fig, we want to delete the node having value 5 then we will set left pointer of its parent
node as NULL. That is left pointer of node having value 7 is set to NULL.

@

After deletion

Deletion of a node having one child.

123

To explain this kind of deletion, consider a tree as given below.

22)

“
Jo
9
AN

/

Jolk>
©

Deletion of a node having two children.
Consider a tree as given below.

If we want to delete the node 15, then we
will simply copy node 18 at place of 16
and then set the node free

124

Let us consider that we want to delete node having value 7. We will then find out the inorder successor
of node 7. We will then find out the inorder successor of node 7. The inorder successor will be simply
copied at location of node 7.

That means copy 8 at the position where value of node is 7. Set left pointer of 9 as NULL. This
completes the deletion procedure.

/®\

Searching for a node in binary search tree.

In searching, the node which we want to search is called a key node. The key node will be compared
with each node starting from root node if value of key node is greater than current node then we
search for it on right sub branch otherwise on left sub branch. If we reach to leaf node and still we do
not get the value of key node then we declare “node is not present in the tree”.

125

In the above tree, if we want to search for value 9. Then we will compare 9 with root node 10. As 9 is
less than 10 we will search on left sub branch. Now compare 9 with 5, but 9 is greater than 5. So we
will move on right sub tree. Now compare 9 with 8 but 9 is greater than 8 we will move on right sub
branch. As the node we will get holds the value 9. Thus the desired node can be searched.

AVL TREES

Adelsion Velski and Lendis in 1962 introduced binary tree structure that is balanced with
respect to height of sub trees. The tree can be made balanced and because of this retrieval

of any node can be done jn 0(log n) times, where n is total number of nodes. From the
name of these scientists the treeis called AVL tree.
Definition:

An empty tree is height balanced if T is a non empty binary tree with T_and Tr as
its left and right sub trees. The T is height balanced if and only if

I T and TR are height balanced.

il. hL-hr <= 1 where hi_and hr are heights of T_and Tg.
The idea of balancing a tree is obtained by calculating the balance factor of a tree.

Definition of Balance Factor:

The balance factor BF(T) of a node in binary tree is defined to be hi_-hr where h and hr
are heights of left and right sub trees of T.

For any node in AVL tree the balance factor i.e. BF(T) is -1, 0 or +1.

126

BF=0 Not an AVL Tree

Height of AVL Tree:

Theorem: The height of AVL tree with n elements (nodes) is O(log n).

Proof: Let an AVL tree with n nodes in it. Nh be the minimum number of nodes in an AVL tree of
height h.

In worst case, one sub tree may have height h-1 and other sub tree may have height h-2. And both these
sub trees are AVL trees. Since for every node in AVL tree the height of left and right sub trees differ
by at most 1.

Hence

Nh = Nh-1+Np-2+1

Where Nh denotes the minimum number of nodes in an AVL tree of height h.

No=0 N1=2

127

We can also write it as
N > Np = Np-1+Np-2+1

> 2Nh-2

> 4Nh-4
> 2iNh-2i

If value of h is even, let i = h/2-1

Then equation becomes

N > 2h/2-1N2

=N > 2(h-1)/2x4 (N2 = 4)

= O(log N)

If value of h is odd, let I = (h-1)/2 then equation becomes
N > 2(h-1)/2 N1

N>2(h-1)/2x1

H =0(log N)

This proves that height of AVL tree is always O(log N). Hence search, insertion and deletion can
be carried out in logarithmic time.

Representation of AVL Tree

] The AVL tree follows the property of binary search tree. In fact AVL trees ae
basically binary search trees with balance factors as -1, 0, or +1.

| After insertion of any node in an AVL tree if the balance factor of any node
becomes other than -1, 0, or +1 then it is said that AVL property is violated. Then
we have to restore the destroyed balance condition. The balance factor is denoted at
right top corner inside the node.

128

For example:
BF=1

A i AR
\

/é% Q

& o

i /
O © O

Original AVL Tree

/@

\®o/\o

@ N

Restoring AVL Property

] After insertion of a new node if balance condition gets destroyed, then the nodes on that
path(new node insertion point to root) needs to be readjusted. That means only the affected sub
tree is to be rebalanced.

] The rebalancing should be such that entire tree should satisfy AVL property.
In above given example-

Insert 13 Property violated

129

Nodes 18, 15, 13 are to be adjusted By adjusting 15 the entire
Tree satisfies AVL property

Insertion of a node.
There are four different cases when rebalancing is required after insertion of new node.

An insertion of new node into left sub tree of left child. (LL).
An insertion of new node into right sub tree of left child. (LR).
An insertion of new node into left sub tree of right child. (RL).
An insertion of new node into right sub tree of right child.(RR).

o

Some modifications done on AVL tree in order to rebalance it is called rotations of AVL tree

There are two types of rotations:

Single rotation Double rotation
Left-Left(LL rotation) Left-Right(LR rotation)
Right-Right(RR rotation) Right-Left(RL rotation)

Insertion Algorithm:

1.Insert a new node as new leaf just as an ordinary binary search tree.

2.Now trace the path from insertion point(new node inserted as leaf) towards root. For each node
‘n’ encountered, check if heights of left (n) and right (n) differ by at most 1.

a) If yes, move towards parent (n).

b) Otherwise restructure by doing either a single rotation or a double rotation.

Thus once we perform a rotation at node ‘n’ we do not require to perform any rotation at any
ancestor on ‘n’.

130

Different rotation in AVL tree:

1. LL rotation: .

\®

When node ‘1’ gets inserted as a left child of node ‘C’ then AVL property gets destroyed i.e. node
A has balance factor +2.

The LL rotation has to be applied to rebalance the nodes.

2. RR rotation:

When node ‘4’ gets attached as right child of node ‘C’ then node ‘A’ gets unbalanced. The rotation
which needs to be applied is RR rotation as shown in fig.

oy /\
0

131

3. LR rotation:

When node ‘3’ is attached as a right child of node ‘C’ then unbalancing occurs because of LR.
Hence LR rotation needs to be applied.

4. RL rotation

AN 0

§:>® o
PRV

When node 2’ is attached as a left child of node ‘C’ then node ‘A’ gets unbalanced as its balance
factor becomes -2. Then RL rotation needs to be applied to rebalance the AVL tree.
Example:

Insert 1, 25, 28, 12 in the following AVL tree.

132

() ()
S b ©
) ©
Insert 1

To insert node ‘1’ we have to attach it as a left child of ‘2°. This will unbalance the tree as follows.
We will apply LL rotation to preserve AVL property of it.
I

[

Insert 25

We will attach 25 as a right child of 18. No balancing is required as entire tree preserves the AVL
property

133

O O ¢)

Insert 28
The node ‘28’ is attached as a right child of 25. RR rotation is required to rebalance.

134

Insert 12

To rebalance the tree we have to apply LR rotation.

135

@

Thus by applying various rotations depending upon direction of insertion of new node the AVL tree can be
restructured.

Deletion:

Even after deletion of any particular node from AVL tree, the tree has to be restructured in order to
preserve AVL property. And thereby various rotations need to be applied.

Algorithm for deletion:

The deletion algorithm is more complex than insertion algorithm.

1. Search the node which is to be deleted.

2. a) If the node to be deleted is a leaf node then simply make it NULL to remove.
b) If the node to be deleted is not a leaf node i.e. node may have one or two children, then the
nho_de n&ust be swapped with its inorder successor. Once the node is swapped, we can remove
this node.

3. Now we have to traverse back up the path towards root, checking the
balance factor of every node along the path. If we encounter unbalancing
in some sub tree

then balance that sub tree using appropriate single or double
rotations. The deletion algorithm takes O(log n) time to delete any node.

136

Consider an AVL tree.

Delete it

The tree becomes

137

()

Thus the node 14 gets deleted from AVL tree.

Searching:

The searching of a node in an AVL tree is very simple. As AVL tree is basically binary search tree, the
algorithm used for searching a node from binary search tree is the same one is used to search a node
from AVL tree.

The searching of a node from AVL tree takes O(log n) time.

BTREES

>

Multi-way trees are tree data structures with more than two branches at a node. The data
structures of m-way search trees, B trees and Tries belong to this category of tree
structures.

AVL search trees are height balanced versions of binary search trees, provide efficient
retrievals and storage operations. The complexity of insert, delete and search operations on
AVL search trees id O(log n).

Applications such as File indexing where the entries in an index may be very large,
maintaining the index as m-way search trees provides a better option than AVL search trees
which are but only balanced binary search trees.

While binary search trees are two-way search trees, m-way search trees are extended binary
search trees and hence provide efficient retrievals.

B trees are height balanced versions of m-way search trees and they do not recommend
representation of keys with varying sizes.

Tries are tree based data structures that support keys with varying sizes.

138

UNIT -5

Definition:

A B tree of order m is an m-way search tree and hence may be empty. If non empty, then the following
properties are satisfied on its extended tree representation:
i. Theroot node must have at least two child nodes and at most m child nodes.
ii. All internal nodes other than the root node must have at least |m/2 | non empty child nodes and at most
m non empty child nodes.
iii. The number of keys in each internal node is one less than its number of child nodes and these keys
partition the keys of the tree into sub trees.
iv. All external nodes are at the same level.

V.
Example:
F K 0 B tree of order 4
Level
L \ ~
C D G M N P Q w
N
S T X Y Z
Level
3
Insertion

For example construct a B-tree of order 5 using following numbers. 3, 14, 7, 1, 8, 5, 11, 17, 13, 6, 23, 12,
20, 26, 4, 16, 18, 24, 25, 19

The order 5 means at the most 4 keys are allowed. The internal node should have at least 3 non empty
children and each leaf node must contain at least 2 keys.

Step 1: Insert 3,14, 7,1

139

UNIT -5

Step 2: Insert 8, Since the node is full split the node at medium 1, 3, 7, 8, 14

Step 3: Insert 5, 11, 17 which can be easily inserted in a B-tree.

1|3|5

7

Step 4: Now insert 13. But if we insert 13 then the leaf node will have 5 keys which is not allowed. Hence

8

11, 13, 14, 17 is split and medium node 13 is moved up.

-~

H>

Q

14

11

14

17

1 3 5

11

17

140

Step 5: Now insert 6, 23, 12, 20 without any split.

1|3|5

| 6

7 13

8|11|12

14

17

20

23

Step 6: The 26 is inserted to the right most leaf node. Hence 14, 17, 20, 23, 26 the node is split and 20 will be

moved up.

20

8 11 12

14

17

23

26

141

UNIT -5

Step 7: Insertion of node 4 causes left most node to split. The 1, 3, 4, 5, 6 causes key 4 to move up.

Then insert 16, 18, 24, 25.

7 13 20
\ !
1 3 5 6 11 | 12 141 16 | 17 |18 23 | 24 25 |26
Step 8: Finally insert 19. Then 4, 7, 13, 19, 20 needs to be split. The median 13 will be moved up to
from a root node.
The tree then will be -
13
4 7 17 | 20
’// /f
1 3 5 6 11| 12 14 16 18 19 23| 24 | 25 |26
Thus the B tree is constructed. 13
Deletion
Consider a B-tree /, \\
4 7 17 (20
|~
’// X /f
1 3 5 6 11 | 12 14 16 18 19 23| 24| 25 (26

142

UNIT -5

Delete 8, then it is very simple.

12

Now we will delete 20, the 20 is not in a leaf node so we will find its successor which is 23, Hence 23

will be moved up to replace 20.

13

11

12

17 | 20
e
/
14 16 18 19 23 | 24 | 25 |26

13

17 | 23
/’
14 16 18 19 24 | 25| 26

Next we will delete 18. Deletion of 18 from the corresponding node causes the node with only one

key, which is not desired (as per rule 4) in B-tree of order 5. The sibling node to immediate right has
an extra key. In such a case we can borrow a key from parent and move spare key of sibling up.

143

UNIT -5

13

11

12

17 | 24
|~
- /f’
14 16 19 23 25 26

Now delete 5. But deletion of 5 is not easy. The first thing is 5 is from leaf node. Secondly this leaf

node has no extra keys nor siblings to immediate left or right. In such a situation we can combine this
node with one of the siblings. That means remove 5 and combine 6 with the node 1, 3. To make the tree
balanced we have to move parent’s key down. Hence we will move 4 down as 4 is between 1, 3, and 6.

The tree will be-

12

But again internal node of 7 contains only one key which not allowed in B-tree. We then will try to borrow
a key from sibling. But sibling 17, 24 has no spare key. Hence we can do is that, combine 7 with 13 and 17,

24. Hence the B-tree will be

13

17 | 24
.~
//
14 16 19 23 25 26

144

UNIT -5

17 24

1‘3‘4‘6 11 | 12

Searching

The search operation on B-tree is similar to a search to a search on binary search tree. Instead of choosing
between a left and right child as in binary tree, B-tree makes an m-way choice. Consider a B-tree as given

19 |23

25

26

below.
13
P ~
4 7
17
2
7\ /
1 3 5 6 8| 11| 12 14 16 18 19 23| 24|25 |26

If we want to search 11 then
I. 11 <13; Hence search left node
ii. 11>7; Hence right most node
iii. 11>8; move in second block

iv. node 11 is found

145

UNIT -5

The running time of search operation depends upon the height of the tree. It is O(log n).

Height of B-tree

The maximum height of B-tree gives an upper bound on number of disk access. The maximum number of
keys in a B-tree of order 2m and depth h is

1+2m+2m(m+1) + 2m(m+1)2 .4 2m(m+1)h'1

h .
=1+5 2mm+)"
i=1
The maximum height of B-tree with n keys

log m+1_n = 0O(log n)
2m

146

B+ Trees

Most implementations use the B-tree variation, the B+-tree.

In the B-tree, every value of the search field appears once at some level in the
tree, along with the data pointer to the record, or block where the record is stored.

In a B+ tree, data pointers are stored only at the leaf nodes, therefore the
structure of the leaf nodes vary from the structure of the internal (non leaf) nodes.

If the search field is a key field, the leaf nodes have a value for every value of the
search field, along with the data pointer to the record or block.

If the search field is a non key field, the pointer points to a block containing
pointers to the data file records, creating an extra level of indirection (similar to
option 3 for the secondary indexes)

The leaf nodes of the B+ Trees are linked to provide ordered access on the
search field to the record. The first level is similar to the base level of an index.

Some search field values in the leaf nodes are repeated in the internal nodes of
the B+ trees, in order to guide the search.

B+ Tree Example

N
P

/ [\

B+ Tree Internal Node Structure

1.

2.
3.

B

Each internal node is of the form <Py, K1, P2, K,, Pq1, Kg1, Pg>, Where g<=p
and each P; is a tree pointer.

Within each internal node, K1 < K; << Kg.1.

For all search field values X in the subtree pointed at by Pi, we have:

e Ki-l<X<=Kiforl<i<q;
o X<=Kfori=1;
e andKi-1<Xfori=q.
Each internal node has at most, p tree pointers.
Each internal node, except the root, has at least [p/2 | tree pointers. The root

node has at least two tree pointers if it is an internal node.
An internal node with q pointers, q <=p, has g-1 search field values.

147

B+ Tree Leaf Node Structure

1. Each leaf node is of the form, <<Ki, Pri>, <Ky, Pr2>,... ,<Kq.1, Prq.1>, Pnex> Where
g<=p, each Pr; is a data pointer, and Pnex points to the next leaf node of the B+
tree.

Within each leaf node, K; < Kz < ...< Kg.1, g<=p

Each Pr; is a data pointer that points to the record whose search field value is Ki,
or to a file block containing the record (or a block of pointers if the search field is
not a key field)

4. Each leaf node has at least [p/2| values.

5. All leaf nodes are at the same level.

wn

B+ Tree Information

e By starting at the leftmost block, it is possible to traverse leaf nodes as a linked
list using the Pnex pointers. This provides ordered access to the data records on
the indexing field.

e Entries in internal nodes of a B+ tree include search values and tree pointers,
without any data pointers, more entries can be stored into an internal node of a
B+ tree, than for a B-tree.

e Therefore the order p will be larger for a B+ tree, which leads to fewer B+ tree
levels, improving the search time.

e The order p can be different for the internal and leaf nodes, because of the
structural differences of the nodes.

Example 6 from Text

To calculate the order p of a B+ Tree. suppose the search key field is V = 9 bytes
long, the block size is B = 512 bytes, a record pointer is Pr = 7 bytes and a block
pointer is P = 6 bytes. An internal node of the B+ trees can have up to p tree
pointers and p — 1 search field values, which must fit into a single block.

Calculate the value of p for an internal node:

5 6 bytes
9 bytes

p*P + (p-1)*V <= 512

p*6 + (p-1)*9 <= 512

6p + 9p -9 <=512

15p <= 522

p = 34 which means that each internal node can hold up to 34 tree pointers, and 33
search key values.

Calculate the value of p for a leaf node:

1 3 — 2
6 bytes

9 bytes
7 bytes

(Prea)*((Pr + V) + P <= 512

16Piear + 6 <= 512
pleaf <= 506/16

148

Preat = 31 which means each leaf node can hold up to piear = 31 value/data pointer
combinations, assuming data pointers are record pointers.

Example 7 from Text

Suppose that we construct a B+ tree on the field of Example 6. To calculate the
approximate number of entries of the B+ tree we assume that each node is 69
percent full. On average, each internal node will have 34 * 0.69 or approximately 23
pointers, and hence 22 values. Each leaf node, on the average will hold 0.69*pleaf =
0.69*31 or approximately 21 data record pointers. A B+ tree will have the following
average number of entries at each level.

Root: 1 node 22 entries 23 pointers
Level 1: 23 nodes 506 entries 529 pointers
Level 2: 529 nodes 11,638 entries 12,167 pointers

Leaf Level: 12,167 nodes 255,507 record pointers

When we compare this result with the previous B-tree example (Example 5), we can
see that the B+ tree can hold up to 255,507 record pointers, whereas a
corresponding B-tree can only hold 65,535 entries.

Insertion and Deletion with B+-trees.
The following example has p = 3, and piear = 2

Points to Note:

e Every key value must exist at the leaf level, because all data pointers are at the
leaf level,

e Every value appearing in an internal node, also appears as the rightmost value in
the leaf level of the subtree pointed at by the tree pointer to the left of the value.

® When a leaf node is full, and a new entry is inserted there, the node overflows
and must be split. The first j = (pieart1)/2 entries (in the example 2 entries) in the
original node are kept there, and the remaining entries are moved to the new leaf

node. The entry at position j is copied/replicated and moved to the parent node.

e \When an internal node is full, and a new entry is to be inserted, the node
overflows and must be split into 2 nodes. The entry at position jis moved to the
parent node. The first j-1 entries are kept in the original node, and the last j+1
entries are moved to the new node.

To practice B+ Tree insertion, complete Exercise 14.15 in Chapter 14 of the course
text.

149

	Abstract Data Type
	LIST ADT
	Code for insert front:-
	Code for insert End:-
	code for deleting a node at front
	code for deleting a node at end of the list

	Implementation of node using structure
	Implementation of node using class
	Doubly linked list ADT:
	Code for insert front:-
	Code to insert a node at End:-
	Code to insert a node at a position
	code for deleting a node at front
	code for deleting a node at end of the list

	code for deleting a node at a position
	Advantages:

	The general terminology associated with the stack is as follows:
	Popping an element from stack:
	QUEUE ADT
	Application of Queue:
	Insertion into a Circular Queue:
	Deletion from Circular Queue:

	Priority Queue DEFINITION:
	APPLICATIONS:
	ABSTRACT DATA TYPE(ADT):
	HEAPS
	A max heap is a tree in which value of each node is greater than or equal to value of its children nodes. A min heap is a tree in which value of each node is less than or equal to value of its children nodes.
	Insertion of element in the Heap:

	The insertion strategy just outlined makes a single bubbling pass from a leaf toward the root. At each level we do (1) work, so we should be able to implement the strategy to have complexity O(height) = O(log n).
	void Heap::insert(int item)

	int temp; //temp node starts at leaf and moves up.
	H[temp] = H[temp/2]; temp=temp/2;
	Deletion of element from the heap:

	int item, temp; if(size==0)
	Applications Of Heap:

	HEAP SORT
	Write a program to implement heap sort

	ALGORITHMS
	Algorithm for Linear search
	Algorithm:
	ALGORITHM:

	RUN 1:
	ALGORITHM:

	program to implement Quick sort
	Conceptually, merge sort works as follows:
	C++ program for implementation of Heap Sort

	Terminology of Graph
	Graphs:-

	Graph Representations
	Graph data structure is represented using following representations...
	In this representation, graph can be represented using a matrix of size total number of vertices by total number of vertices. That means if a graph with 4 vertices can be represented using a matrix of 4X4 class. In this matrix, rows and columns both r...

	The delete operation:
	cur
	head
	void dictionary::delete_d()

	SKIP LIST REPRESENTATION
	Node structure of skip list:
	Searching:
	Insertion:
	Determining the level of each node:

	HASH TABLE REPRESENTATION
	HASH FUNCTION
	TYPES OF HASH FUNCTION
	2. Mid Square:
	3. Multiplicative hash function:
	Donald Knuth suggested to use constant A = 0.61803398987
	4. Digit Folding:
	5. Digit Analysis:

	COLLISION
	COLLISION RESOLUTION TECHNIQUES
	CHAINING
	OPEN ADDRESSING – LINEAR PROBING
	Problem with linear probing:

	QUADRATIC PROBING:
	DOUBLE HASHING 9
	Comparison of Quadratic Probing & Double Hashing

	REHASHING
	H(key) = key mod tablesize
	Advantages:

	EXTENSIBLE HASHING
	Deletion Operation:
	Applications of hashing:

	TREES
	Level 0
	 The length of a particular path is the number of branches in that path. The degree of a node of a tree is the number of children of that node.
	3. Leaves: These are the terminal nodes of the tree. The nodes with degree 0 are always the leaf nodes. Eg: E, F, K, L,H, I, J
	A binary tree is a finite set of nodes which is either empty or consists of a root and two disjoint trees called left sub-tree and right sub-tree.

	Types Of Binary Trees:
	3. Complete binary tree:
	Note:

	Binary Tree Representation
	a) Sequential Representation
	Advantages of sequential representation:
	Disadvantages of sequential representation:
	b) Linked Representation
	Advantages of linked representation:
	Disadvantages of linked representation:
	TRAVERSING A BINARY TREE
	Inorder Traversal:
	Pseudo Code:
	inorder(temp->left); cout<<”temp->data”; inorder(temp->right);
	is the preorder traversal of the above fig. We are following Root|Left|Right path i.e. data at the root node will be printed first then we move on the left sub-tree and go on printing the data till we reach to the left most node. Print the data at th...
	Operations On Binary Search Tree:
	Deletion of leaf node.
	Before deletion
	Deletion of a node having one child.

	If we want to delete the node 15, then we will simply copy node 18 at place of 16 and then set the node free
	Deletion of a node having two children.
	Searching for a node in binary search tree.

	AVL TREES
	Definition:
	Definition of Balance Factor:

	Height of AVL Tree:
	Proof: Let an AVL tree with n nodes in it. Nh be the minimum number of nodes in an AVL tree of height h.
	.
	Insertion of a node.
	There are two types of rotations:

	1. Insert a new node as new leaf just as an ordinary binary search tree.
	2. RR rotation:

	Insert 1
	Insert 12

	Deletion:
	Algorithm for deletion:

	Searching:
	BTREES
	Definition:
	Example:

	Step 4: Now insert 13. But if we insert 13 then the leaf node will have 5 keys which is not allowed. Hence 8,
	Now delete 5. But deletion of 5 is not easy. The first thing is 5 is from leaf node. Secondly this leaf node has no extra keys nor siblings to immediate left or right. In such a situation we can combine this node with one of the siblings. That means r...
	Searching
	Height of B-tree

	B+ Trees
	B+ Tree Example
	B+ Tree Internal Node Structure
	B+ Tree Information

	Example 7 from Text

